Skip to content. | Skip to navigation

Sections
You are here: Home content generated doc.free neda Records 199902261 Presentation main Some comments on your EMSD document

Some comments on your EMSD document

Some comments on your EMSD document

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Some comments on your EMSD document





Mohsen,

I would like to pass along to you some suggestions that could
improve the readibilty and acceptance of your EMSD document.
These are simply marginal notes I made as I plowed through it.

First of all, some examples would be very, very helpful.  In reply to
my question, you gave me a long, detailed dissection of the steps in a
simple error-free submission.  A simple diagram could have conveyed the
same concepts much more compactly and much more clearly.  In fact, your
lengthy explanation did not cover the important case, when there is a
failure of the exactly-once semantics.  I am still not exactly clear
when and how you use the verify messages.  Diagrams of these cases (as
examples, you might look at RFC 793).

DO NOT UNDERESTIMATE THE IMPORTANCE OF CLEAR DOCUMENTATION AS A
FACTOR IN THE SUCCESS OF THE INTERNET, AND THE FAILURE OF OSI!

Protocol experts and programmers don't want/need detailed
implementation specifications; they want a clear understanding
of the protocol, and they can fill in the implementation details
themselves.

Bob Braden


  *> 
  *> 
  *> INTERNET DRAFT			EXPIRES MAY 1998	INTERNET DRAFT
  *> 
  *> Network Working Group                                         M. Banan
  *> INTERNET DRAFT		                     Neda Communications, Inc.
  *> Category:  Informational
  *>                                                           October 1998
  *> 
  *> 
  *>                                 Neda's
  *>             Efficient Mail Submission and Delivery (EMSD)
  *>                   Protocol Specification Version 1.3
  *> 		  <draft-rfced-info-banan-00.txt>
  *> 
  *> 
  *> Status of This Memo
  *> 
  *> This document is an Internet-Draft.  Internet-Drafts are working
  *> documents of the Internet Engineering Task Force (IETF), its
  *> areas, and its working groups.  Note that other groups may also
  *> distribute working documents as Internet-Drafts.
  *> 
  *> Internet-Drafts are draft documents valid for a maximum of six
  *> months and may be updated, replaced, or obsoleted by other
  *> documents at any time.  It is inappropriate to use Internet-
  *> Drafts as reference material or to cite them other than as
  *> "work in progress."
  *> 
  *> To view the entire list of current Internet-Drafts, please check
  *> the "1id-abstracts.txt" listing contained in the Internet-Drafts
  *> Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
  *> (Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
  *> (Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu
  *> (US West Coast).
  *> 
  *> 
  *> Distribution of this document is unlimited.
  *> 
  *> 
  *> 
  *> NOTE TO IESG AND RFC-EDITOR

(This needs to be deleted or incorporated into the text).
  *> 
  *> This protocol specification constitutes a point-of-record.  It
  *> documents information exchanges and behaviors of existing
  *> implementations.  It is a basis for implementation of efficient mail
  *> submission and delivery user agents and servers.
  *> 
  *> This specification has been developed entirely outside of IETF. It has
  *> had the benefit of review by many outside of IETF. Much has been
  *> learned from existing implementations of this protocol.  A number of
  *> deficiencies and areas of improvement have been identified and are
  *> documented in this specification.
  *> 
  *> This protocol specification is being submitted on October 23, 1998 for
  *> timely publication as an Informational RFC.
  *> 
  *> Future development and enhancements to this protocol may take place
  *> inside of IETF.
  *> 
  *> 
  *> ABSTRACT
  *> 
  *> This document specifies the protocol and format encodings for
  *> Efficient Mail Submission and Delivery (EMSD). EMSD is a messaging
  *> protocol that is highly optimized for submission and delivery of short
  *> Internet mail messages.  EMSD is designed to be a companion to
  *> existing Internet mail protocols.
  *> 
  *> This specification narrowly focuses on submission and delivery of
  *> 
  *> 
  *> 
  *> 
  *> short mail messages with a clear emphasis on efficiency.  EMSD is
  *> designed specifically with wireless network (e.g., CDPD, Wireless-IP,
  *> Mobile-IP) usage in mind.  EMSD is designed to be a natural
  *> enhancement to the mainstream of Internet mail protocols when
  *> efficiency in mail submission and mail delivery are important.  As
  *> such, EMSD is anticipated to become an initial basis for convergence
  *> of Internet Mail and IP-based Two-Way Paging.
  *> 
  *> The reliability requirement for message submission and message
  *> delivery in EMSD are the same as existing email protocols.  EMSD
  *> protocol accomplishes reliable connectionless mail submission and
  *> delivery services on top of Efficient Short Remote Operations (ESRO)
  *> protocols as specified in RFC-2188 [1].
  *> 
  *> Most existing Internet mail protocols are not efficient.  Most
  *> existing Internet mail protocols are designed with simplicity and
  *> continuity with SMTP traditions as two primary requirements.  EMSD is
  *> designed with efficiency as a primary requirement.
  *> 
  *> The early use of EMSD in the wireless environment is manifested as
  *> IP-based Two-Way Paging services.  The efficiency of this protocol
  *> also presents significant benefits for large centrally operated
  *> Internet mail service providers.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                       [Page 2]
  *> 
  *> 
  *> 
  *> 
  *> Contents
  *> 
  *> 1  PRELIMINARIES                                                     5
  *>    1.1 Internet Mail Submission and Delivery     .   .   .   .       5
  *>    1.2 Relationship Of EMSD To Other Mail Protocols  .   .   .       5
  *>    1.3 EMSD Requirements and Goals   .   .   .   .   .   .   .       7
  *>    1.4 Anticipated Uses Of EMSD  .   .   .   .   .   .   .   .       8
  *>    1.5 Definitions of Terms Used in this Specification   .   .       8
  *>    1.6 Conventions Used In This Specification    .   .   .   .       9
  *> 
  *> 2  EFFICIENT MAIL SUBMISSION AND DELIVERY OVERVIEW                   9
  *> 
  *> 3  EFFICIENT MAIL SUBMISSION AND DELIVERY PROTOCOL                  12
  *>    3.1 Use Of Lower Layers   .   .   .   .   .   .   .   .   .      13
  *>        3.1.1 Use of ESROS    .   .   .   .   .   .   .   .   .      13
  *>        3.1.2 Use Of UDP .   .   .   .   .   .   .   .   .   .       13
  *>        3.1.3 Encoding Rules .   .   .   .   .   .   .   .   .       13
  *>        3.1.4 Presentation Context    .   .   .   .   .   .   .      14
  *>    3.2 EMSD-UA Invoked Operations    .   .   .   .   .   .   .      14
  *>        3.2.1 submit .   .   .   .   .   .   .   .   .   .   .       14
  *>        3.2.2 deliveryControl     .   .   .   .   .   .   .   .      16
  *>        3.2.3 deliveryVerify .   .   .   .   .   .   .   .   .       21
  *>    3.3 EMSD-SA Invoked Operations    .   .   .   .   .   .   .      23
  *>        3.3.1 deliver     .   .   .   .   .   .   .   .   .   .      24
  *>        3.3.2 submissionControl   .   .   .   .   .   .   .   .      26
  *>        3.3.3 submissionVerify    .   .   .   .   .   .   .   .      29
  *>    3.4 EMSD Common Information Objects   .   .   .   .   .   .      30
  *>        3.4.1 SecurityElements    .   .   .   .   .   .   .   .      30
  *>        3.4.2 Message Segmentation and Reassembly     .   .   .      31
  *>        3.4.3 Common Errors   .   .   .   .   .   .   .   .   .      34
  *>        3.4.4 ContentType     .   .   .   .   .   .   .   .   .      36
  *>        3.4.5 EMSDMessageId   .   .   .   .   .   .   .   .   .      36
  *>        3.4.6 EMSDAddress     .   .   .   .   .   .   .   .   .      37
  *>        3.4.7 DateTime    .   .   .   .   .   .   .   .   .   .      38
  *>        3.4.8 AsciiPrintableString    .   .   .   .   .   .   .      38
  *>        3.4.9 ProtocolVersionNumber   .   .   .   .   .   .   .      38
  *>    3.5 Submission and Delivery Procedures    .   .   .   .   .      38
  *> 
  *> 4  DUPLICATE OPERATION DETECTION SUPPORT                            41
  *>    4.1 Duplicate Operation Detection Support Overview    .   .      41
  *>        4.1.1 Operation Value     .   .   .   .   .   .   .   .      41
  *>        4.1.2 Operation Instance Identifier   .   .   .   .   .      42
  *> 
  *> 5  EMSD PROCEDURE FOR OPERATIONS                                    43
  *>    5.1 MTS Behavior  .   .   .   .   .   .   .   .   .   .   .      44
  *>        5.1.1 MTS Performer   .   .   .   .   .   .   .   .   .      44
  *>        5.1.2 Message-submission .   .   .   .   .   .   .   .       45
  *>        5.1.3 Delivery-control    .   .   .   .   .   .   .   .      47
  *>        5.1.4 Delivery-verify     .   .   .   .   .   .   .   .      47
  *>        5.1.5 MTS Invoker     .   .   .   .   .   .   .   .   .      47
  *>    5.2 UA Behavior   .   .   .   .   .   .   .   .   .   .   .      50
  *> 
  *> Banan                     Informational                       [Page 3]
  *> 
  *> 
  *> 
  *> 
  *>        5.2.1 UA Performer    .   .   .   .   .   .   .   .   .      50
  *>        5.2.2 UA Invoker .   .   .   .   .   .   .   .   .   .       53
  *> 
  *> 6  EMSD FORMAT STANDARDS                                            54
  *>    6.1 Format Standard Overview  .   .   .   .   .   .   .   .      54
  *>    6.2 Interpersonal Messages    .   .   .   .   .   .   .   .      55
  *>        6.2.1 Heading fields .   .   .   .   .   .   .   .   .       55
  *>        6.2.2 Body part types     .   .   .   .   .   .   .   .      61
  *> 
  *> 7  SECURITY CONSIDERATIONS                                          62
  *> 
  *> 8  AUTHOR'S ADDRESS                                                 62
  *> 
  *> A  EMSD-P ASN.1 MODULE                                              62
  *> 
  *> B  EMSD-IPM ASN.1 MODULE                                            73
  *> 
  *> C  RATIONALE FOR KEY DESIGN DECISIONS                               77
  *>    C.1 Deviation From The SMTP Model     .   .   .   .   .   .      77
  *>        C.1.1 Comparison of SMTP and EMSD Efficiency .   .   .       77
  *>    C.2 Use of ESRO Instead of TCP    .   .   .   .   .   .   .      78
  *>    C.3 Use Of Remote Procedure Call (RPC) Model  .   .   .   .      79
  *>    C.4 Use Of ASN.1  .   .   .   .   .   .   .   .   .   .   .      79
  *> 
  *> D  FURTHER DEVELOPMENT                                              79
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                       [Page 4]
  *> 
  *> 
  *> 
  *> 
  *> 1  PRELIMINARIES
  *> 
  *> Mail in the Internet was not a well-planned enterprise, but instead
  *> arose in more of an "organic" way.
  *> 
  *> This introductory section is not intended to be a reference model and
  *> concept vocabulary for mail in the Internet.  Instead, it only
  *> provides the necessary preliminaries for the concepts and terms that
  *> are essential to this specification.
  *> 
  *> 
  *> 1.1  Internet Mail Submission and Delivery
  *> 
  *> For the purposes of this specification, mail submission is the process
  *> of putting mail into the mail transfer system (MTS).
  *> 
  *> For the purposes of this specification, mail delivery is the process
  *> of the MTS putting mail into a user's final mail-box.
  *> 
  *> Throughout the Internet, presently most of mail submission and
  *> delivery is done through SMTP.
  *> 
  *> SMTP was defined as a message *transfer* protocol, that is, a means to
  *> route (if needed) and deliver mail by putting finished (complete)
  *> messages in a mail-box.  Originally, users connected to servers from
  *> terminals, and all processing occurred on the server.  Now, a
  *> split-MUA (Mail User Agent) model is common, with MUA functionality
  *> occurring on both the user's own system and the server.
  *> 
  *> In the split-MUA model, getting the messages to the user is
  *> accomplished through access to a mail-box on the server through such
  *> protocols as POP and IMAP. In the split-MUA model, user's access to
  *> its message is a "Message Pull" paradigm where the user is required to
  *> poll his mailbox.  Proper message delivery based on a "Message Push"
  *> paradigm is presently not supported.  The EMSD protocol addresses this
  *> shortcoming with an emphasis on efficiency.
  *> 
  *> In the split-MUA model, message submission is often accomplished
  *> through SMTP. SMTP is widely used as a message *submission* protocol.
  *> Widespread use of SMTP for submission is a reality, regardless of
  *> whether this is good or bad.  EMSD protocol provides an alternative
  *> mechanism for message submission which emphasizes efficiency.
  *> 
  *> 
  *> 1.2  Relationship Of EMSD To Other Mail Protocols
  *> 
  *> Various Internet mail protocols facilitate accomplishment of various
  *> functions in mail processing.
  *> 
  *> Figure 1, categorizes the capabilities of SMTP, IMAP, POP and EMSD
  *> based on the following functions:
  *> 
  *> Banan                     Informational                       [Page 5]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> +------------------+------+-------+-----+------+
  *> |         Protocols| SMTP |  IMAP | POP | EMSD |
  *> |Functions         |      |       |     |      |
  *> |------------------|------|-------|-----|------|
  *> |Submission        | XX   |       |     | XXX  |
  *> |------------------|------|-------|-----|------|
  *> |Delivery          | XXX  |       |     | XXX  |
  *> |------------------|------|-------|-----|------|
  *> |Relay (Routing)   | XXX  |       |     |      |
  *> |------------------|------|-------|-----|------|
  *> |Retrieval         |      |  XXX  | XXX |  XX  |
  *> |------------------|------|-------|-----|------|
  *> |Mailbox Access    |      |  XXX  |  X  |      |
  *> |------------------|------|-------|-----|------|
  *> |Mailbox Synch.    |      |  XXX  |     |      |
  *> +------------------+------+-------+-----+------+
  *> 
  *> 
  *>        Figure 1:  Messaging Protocols vs.  Supported Functions
  *> 
  *> 
  *>   o Mail Submission
  *> 
  *>   o Mail Delivery
  *> 
  *>   o Mail Routing (Relay)
  *> 
  *>   o Mail Retrieval
  *> 
  *>   o Mail-box Access
  *> 
  *>   o Mail-box Synchronization
  *> 
  *> In Figure 1, the number of "X"es in each box denotes the extent to
  *> which a particular function is supported by a particular protocol.
  *> 
  *> Figure 1 clearly shows that combinations of these protocols can be
  *> used to complement each other in providing rich functionality to the
  *> user.  For example, a user interested in highly mobile messaging
  *> functionalities can use EMSD for "submission and delivery of time
  *> critical and important messages" and use IMAP for comprehensive access
  *> to his/her mail-box.
  *> 
  *> For mail submission and delivery of short messages EMSD is up to 5
  *> times more efficient than SMTP both in terms of the number of packets
  *> transmitted and in terms of number of bytes transmitted.  Even with
  *> PIPELINING and other possible optimizations of SMTP, EMSD is up to 3
  *> times more efficient than SMTP both in terms of the number of packets
  *> transmitted and in terms of number of bytes transmitted.  Various
  *> efficiency studies comparing EMSD with SMTP, POP and IMAP are
  *> 
  *> Banan                     Informational                       [Page 6]
  *> 
  *> 
  *> 
  *> 
  *> available.  See Section C.1.1 for more information about comparison of
  *> SMTP and EMSD's efficiency.
  *> 
  *> 
  *> 1.3  EMSD Requirements and Goals
  *> 
  *> The requirements and goals driving design of EMSD protocol are
  *> enumerated below.
  *> 
  *> 
  *>  1. Provide for submission of short mail messages with the same level
  *>     of functionality (or higher) that the existing Internet mail
  *>     protocols provide.
  *> 
  *>  2. Provide for delivery of short mail messages with the same level of
  *>     functionality (or higher) that the existing Internet mail
  *>     protocols provide.
  *> 
  *>  3. Function as an extension of the existing mainstream Internet mail.
  *> 
  *>  4. Minimize the number of transmissions.
  *> 
  *>  5. Minimize the number of bytes transmitted.
  *> 
  *>  6. Be quick:  minimize latency of message submission and delivery.
  *> 
  *>  7. Provide the same level of reliability (or higher) that the
  *>     existing email protocols provide.
  *> 
  *>  8. Accommodate varying sizes of messages:  the size of a message may
  *>     determine how the system deals with the message, but the system
  *>     must accommodate it.
  *> 
  *>  9. Be power efficient and respect mobile platform resources:
  *>     including memory and CPU levels, as well as battery power
  *>     longevity (i.e.  client-light and server-heavy).
  *> 
  *> 10. Highly extendible:  different users will demand different options,
  *>     so the solution cannot require every feature to be a part of every
  *>     message.  Likewise, usage will emerge that is not currently
  *>     recognized as a requirement.  The solution must be extendible
  *>     enough to handle new, emerging requirements.
  *> 
  *> 11. Secure:  provide the same level of security (or higher) that the
  *>     existing email protocols provide.  Content confidentiality,
  *>     originator/recipient authentication and message integrity must be
  *>     available options to users.
  *> 
  *> 12. Easy to implement:  Re-use existing technology as much as
  *>     possible.
  *> 
  *> 
  *> Banan                     Informational                       [Page 7]
  *> 
  *> 
  *> 
  *> 
  *> 1.4  Anticipated Uses Of EMSD
  *> 

This section is not factually incorrect, but it has a flavor
of hard sell about it.

  *> Any network and network operator which has significant bandwidth and
  *> capacity limitations can benefit from the use of EMSD. Any network
  *> user who must bear high costs for measured network usage can benefit
  *> from the use of EMSD.
  *> 
  *> Initial uses of EMSD is anticipated to be primarily over IP-based
  *> wireless networks to provide two-way paging services.
  *> 
  *> EMSD can also function as an adjunct to Mail Access Protocols for
  *> "Mail Notification Services".
  *> 
  *> Considering:
  *> 
  *>   o that most wireless networks shall converge toward being IP-based;
  *> 
  *>   o that two-way paging is the main proven application in most
  *>     wide-area wireless networks;
  *> 
  *>   o that two-way paging industry and the Internet Email industry can
  *>     and should converge based on a set of open protocols that address
  *>     the efficiency requirements adequately;
  *> 
  *>   o that existing Internet email protocols are not bandwidth
  *>     efficient;
  *> 
  *>   o that existing Internet email protocols do not properly support the
  *>     "push" model of delivery of urgent messages,
  *> 
  *> the EMSD protocol is designed to facilitate the convergence of
  *> IP-based two-way paging and Internet email.
  *> 
  *> Mail submission and delivery take place at the edges of the network.
  *> More than one mail submission and delivery protocols which address
  *> requirements specific to a particular user's environment are likely to
  *> be developed.  Such diversity on the edges of the network is desirable
  *> and with the right protocols, this diversity does not adversely impact
  *> the integrity of the mail transfer system.  EMSD is the initial basis
  *> for the mail submission and delivery protocol to be used when the
  *> user's environment demands efficiency.
  *> 
  *> 
  *> 1.5  Definitions of Terms Used in this Specification
  *> 
  *> The following informal definitions and acronyms are intended to help
  *> describe EMSD model described in this specification.
  *> 
  *> 
  *> Message Transfer Agent (MTA)
  *> 
  *> 
  *> Banan                     Informational                       [Page 8]
  *> 
  *> 
  *> 
  *> 
  *> Message Transfer Service (MTS)
  *> Message Routing Service (MRS): Collection of MTAs responsible for mail
  *>     routing.
  *> 
  *> Message User Agent (MUA)
  *> 
  *> Efficient Mail Submission Server Agent (EMS-SA): An Application
  *>     Process which conforms to this protocol specification and accepts
  *>     mail from an EMS-UA and transfers it towards its recipients.
  *> Efficient Mail Delivery Server Agent (EMD-SA): An Application Process
  *>     which conforms to this protocol specification and delivers mail to
  *>     an EMD-UA.
  *> 
  *> Efficient Mail Submission and Delivery Server Agent (EMSD-SA): An
  *>     Application Process which incorporates both EMS-SA and EMD-SA
  *>     capabilities.
  *> 
  *> Efficient Mail Submission User Agent (EMS-UA): An Application Process
  *>     which conforms to this protocol specification and submits mail to
  *>     EMS-SA.
  *> Efficient Mail Delivery User Agent (EMD-UA): An Application Process
  *>     which conforms to this protocol specification and accepts delivery
  *>     of mail from EMD-SA.
  *> 
  *> Efficient Mail Submission and Delivery User Agent (EMSD-UA): An
  *>     Application Process which incorporates both EMS-UA and EMD-UA
  *>     capabilities.
  *> 
  *> 

I found these definitions confusing; I had to draw myself a picture to get
them straight.  Your choice of "user" and "server" is confusing and
semantically meaningless.  For push-mode delivery, the server is the
client and the client is the server.  Would better choices have been
"Terminal" and "Base".  Actually, the critical sentence that explains
it comes at the beginning of the next section.

  *> 
  *> 1.6  Conventions Used In This Specification
  *> 
  *> The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in
  *> this specification are to be interpreted as defined in [2].
  *> 
  *> This specification uses the ES-OPERATION notation defined in Efficient
  *> Short Remote Operations (ESRO) protocols as specified in RFC-2188 [1].
  *> 
  *> Operations and information objects are typically described using the
  *> ES-OPERATION and ASN.1 notations in the relevant sections of the
  *> specification.
  *> 
  *> The complete machine verifiable ASN.1 modules are also compiled in one
  *> place in Appendix A and Appendix B.
  *> 
  *> 
  *> 2  EFFICIENT MAIL SUBMISSION AND DELIVERY OVERVIEW
  *> 
  *> This section offers a high level view of the Efficient Mail Submission
  *> and Delivery Protocol and Format Standards (EMSD-P&FS).
  *> 

It is wise to avoid introducing useless acronynms, which this
one appers to be.

  *> 
  *> Banan                     Informational                       [Page 9]
  *> 
  *> 
  *> 
  *> 
  *> The EMSD-P&FS are used to transfer messages between the EMSD - Server
  *> Agent (e.g., a Message Center) and the EMSD - User Agent (e.g., a
  *> Two-Way Pager), see Figure 2.
  *> 

Suggest moving this sentence (above) to beginning of section 1.5.

  *> This specification defines the protocols between an EMSD - User Agent
  *> (EMSD-UA) and an EMSD - Server Agent (EMSD-SA). The EMSD - P&FS
  *> consist of two independent components:
  *> 
  *> 
  *>  1. EMSD Format Standard (EMSD-FS).
  *> 
  *>     EMSD-FS is a non-textual form of compact encoding of Internet mail
  *>     (RFC-822) messages which facilitates efficient transfer of
  *>     messages.  EMSD-FS does not replace RFC-822 in any way.  EMSD-FS

uh, that seems misleading.  Of course EMSD-FS replaces RFC-822 for EMSD
transmission!

  *>     defines a method of representation of short interpersonal
  *>     messages.  It defines the "Content" encoding (Header + Body).
  *>     Although EMSD-FS contains end-to-end information its scope is
  *>     purely point-to-point.  EMSD-FS relies on EMSD-P (see 2 below) for
  *>     the transfer of the content to its recipients.
  *> 
  *>     This is described in the section entitled EMSD Format Standards.
  *> 
  *>  2. Efficient Mail Submission and Delivery Protocol (EMSD-P).
  *> 
  *>     EMSD-P is responsible for wrapping a limited size message (see 1

Which "1"?  You apparently mean "point 1. in section 1.3".

  *>     above) in a point-to-point envelope and submitting or delivering
  *>     it.  EMSD-P performs the envelope encoding and relies on the

This seems like strange semantics for a "protocol".  It confuses
protocol, which is an abstract set of rules, with the implementation
that wraps, performs, ...

  *>     services of Efficient Short Remote Operation Services (ESROS) as
  *>     specified in RFC-2188 [1] for transporting the point-to-point
  *>     envelope.  Some of the services of EMSD-P include:  message
  *>     originator authentication and optional message segmentation and
  *>     reassembly.  The EMSD-P is expressed in terms of abstract services
  *>     using the ESROS notation.  This is described in the section
  *>     entitled Efficient Mail Submission and Delivery Protocol.
  *> 

Introducing ESRO at this particular point does not seem logical.

  *> 
  *> It is important to recognize that EMSD-P and EMSD-FS are not
  *> end-to-end, but focus on the point-to-point transfer of messages.  The
  *> two points being EMSD-SA and EMSD-UA. EMSD-P function as elements of
  *> the Internet mail environment, which provide end-to-end (EMSD-User to
  *> any other Messaging Originator or Recipient) services.
  *> 
  *> Figure 2 illustrates how the EMSD-P&FS defines the communication
  *> between a specific EMSD-UA and a specific EMSD-SA. The Message
  *> Transfer System may include a number of EMSD-SAs.  Each EMSD-SA may
  *> have any number of EMSD-UAs with which it communicates.
  *> 
  *> The Efficient Mail Submission and Delivery Services use the Efficient
  *> Short Remote Operation Services (ESROS). They also use the Duplicate
  *> Operation Detection Support Functions as described in the section
  *> entitled Duplicate Operation Detection Support Functions.  These
  *> 
  *> Banan                     Informational                      [Page 10]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> +---------------------------------------------+
  *> | MTS                                         |
  *> |                                             |
  *> |  +-------------------------+                |
  *> |  | MRS                     |                |
  *> |  |  +---+          +---+   |                |
  *> |  |  |   |          | M |   |         +---+  |
  *> |  |  |   |<-------->| T |<----------->|   |  |
  *> |  |  |   |          | A |   |         |   |  |               +---+
  *> |  |  |   |          +---+   |         | E |  |               | E |
  *> |  |  |   |                  |         | M |  |               | M |
  *> |  |  | M |                  |         | S |  |   EMSD-P&FS   | S |
  *> |  |  | T |<-------------------------->| D |<---------------->| D |
  *> |  |  | A |                  |         | - |  |               | - |
  *> |  |  |   |          +---+   |         | S |  |               | U |
  *> |  |  |   |          | M |   |         | A |  |               | A |
  *> |  |  |   |<-------->| T |<----------->|   |  |               +---+
  *> |  |  |   |          | A |   |         |   |  |
  *> |  |  +---+          +---+   |         +---+  |
  *> |  |                         |                |
  *> |  +-------------------------+                |
  *> |                                             |
  *> |                                             |
  *> +---------------------------------------------+
  *> 
  *> 
  *> 
  *>       Figure 2:  Efficient Mail Submission and Delivery Protocol
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 11]
  *> 
  *> 
  *> 
  *> 
  *> functions guarantee that an operation is performed no more than once.
  *> 
  *> 
  *> 3  EFFICIENT MAIL SUBMISSION AND DELIVERY PROTOCOL
  *> 
  *> EM Submission is the process of transferring a message from EMDP-UA to

EMDP->EMSD?

  *> EMSD-SA. EM Delivery is the process of transferring a message from
  *> EMSD-SA to EMSD-UA.
  *> 
  *> This specification defines the following services that comprise the EM
  *> Submission and Delivery Service:
  *> 
  *> EMSD-UA uses the following services:
  *> 
  *> 
  *>   o Message-submission (the submit operation)
  *> 
  *>   o Delivery-control (the deliveryControl operation).

How about delivery-verify?
  *> 
  *> 
  *> EMSD-SA uses the following services:
  *> 
  *> 
  *>   o Message-delivery (the deliver operation)
  *> 
  *>   o Submission-control (the submissionControl operation).

How about submit-verify?
  *> 
  *> 
  *> The Message-submission service enables an EMSD-UA to submit a message
  *> to the EMSD-SA for transfer and delivery to one or more recipients.
  *> 
  *> The Message-deliver service enables the EMSD-SA to deliver a message
  *> to an EMSD-UA.
  *> 
  *> This specification expresses information objects using ASN.1 [X.208].
  *> 
  *> This specification expresses Remote Operations based on the model of
  *> ESROS as specified in Efficient Short Remote Operations (RFC-2188)
  *> [1].  The ES-OPERATION notation of (RFC-2188) is used throughout this
  *> specification to define specific operations.
  *> 
  *> This specification uses the Duplicate Operation Detection Support
  *> functions as specified in Section 4.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 12]
  *> 
  *> 
  *> 
  *> 
  *> 3.1  Use Of Lower Layers
  *> 
  *> 3.1.1  Use of ESROS
  *> 
  *> ESRO protocol, as specified in (RFC-2188 [1]), provides reliable
  *> connectionless remote operation services on top of UDP [6] with
  *> minimum overhead.  ESRO protocol supports segmentation and reassembly,
  *> concatenation and separation.
  *> 
  *> ESRO Services (2-Way and 3-Way handshake) shall be used by the EMSD-P.
  *> 
  *> ESRO Service Access Point (SAP) selectors used by EMSD-P are
  *> enumerated in the protocol.
  *> 
  *> 
  *> 
  *> 3.1.2  Use Of UDP
  *> 
  *> EMSD-P through ESRO MUST use UDP [6] port number 642 (esro-emsdp).
  *> 
  *> Note that specification of Service Access Points (SAP) for EMSD-P
  *> include the UDP Port Number specification in addition to ESRO SAP
  *> selector specifications.  In other words, EMSD-P's use of ESRO SAPs
  *> does not preclude use of the same SAP selectors by other protocols
  *> which use a UDP port other than port 642.  Such usage of ESRO is a
  *> design characteristic of ESRO which results into bandwidth efficiency
  *> and is not a scalability limitation.
  *> 
  *> 
  *> 
  *> 3.1.3  Encoding Rules
  *> 
  *> Use of Basic Encoding Rules (BER) [5] is mandatory for both EMSD
  *> Format Standards and EMSD Protocol.
  *> 
  *> In order to minimize data transfer, the following restrictions shall
  *> be maintained in the formatting of EMSD PDUs:
  *> 
  *> 
  *>   o Specifically, when ASN.1 Basic Encoding Rules are being used:
  *> 
  *> 
  *>     A. Only the "Definite" form of Length encoding MUST be used,
  *> 
  *>     B. The "Short" form of Length encoding MUST be used whenever
  *>        possible (i.e.  when the Length is less than 128), and
  *> 
  *>     C. OCTET STRING and BIT STRING values, and any other native ASN.1
  *>        types which may be encoded as either "Primitive" or
  *>        "Constructed", MUST always be encoded as "Primitive" and MUST
  *> 
  *> 
  *> Banan                     Informational                      [Page 13]
  *> 
  *> 
  *> 
  *> 
  *>        never be "Constructed".
  *> 
  *> 
  *> 3.1.4  Presentation Context
  *> 
  *> 
  *> Parameter Encoding Type of "0" MUST be used in ESRO Protocol to
  *> identify Basic Encoding Rules for operation arguments.
  *> 
  *> 
  *> 3.2  EMSD-UA Invoked Operations
  *> 
  *> The following operations are invoked by EMSD-UA:
  *> 
  *> 
  *>  a. submit
  *> 
  *>  b. deliveryControl
  *> 
  *>  c. deliveryVerify
  *> 
This list is redundant with that at the beginning of sectionk 3 (and
they did not even agree).

  *> 
  *> The submit operation uses the duplication detection functional unit
  *> while deliveryControl and deliveryVerify don't use the duplication
  *> detection.
  *> 
  *> The complete definition of these operations follows.
  *> 
  *> 
  *> 3.2.1  submit
  *> 
  *> 
  *> The submit ES-OPERATION enables an EMSD-UA to submit a message to the
  *> EMSD-SA for transfer and delivery to one or more recipients.
  *> 
  *> 
  *> submit ES-OPERATION
  *> 
  *>     ARGUMENT SubmitArgument
  *>     RESULT SubmitResult
  *>     ERRORS
  *>     {
  *>         submissionControlViolated,
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation,
  *>         messageError
  *>     } ::= 33;
  *> 
  *> 
  *> Duplicate operation detection is necessary for this operation.
  *> 
  *> Banan                     Informational                      [Page 14]
  *> 
  *> 
  *> 
  *> 
  *> The successful completion of the ES-OPERATION signifies that the
  *> EMSD-SA has accepted responsibility for the message (but not that it
  *> has delivered it to its intended recipients).
  *> 
  *> The disruption of the ES-OPERATION by an error signifies that the
  *> EMSD-SA cannot assume responsibility for the message.
  *> 
  *> 
  *> Arguments
  *> 
  *> 
  *> This operation's arguments are:
  *> 

One of the things that makes this document really hard to read is
the lack of indentation and other visual cues.  Here it is all
pretty clear, but later when parameters get more complex, it is
not only unclear, it may be wrong.

  *> 
  *> SubmitArgument ::= SEQUENCE
  *> {
  *>   -- Security features
  *>   security                [0]    IMPLICIT SecurityElement OPTIONAL,
  *> 
  *>   -- Segmentation features for efficient transport
  *>   segment-info                            SegmentInfo OPTIONAL,
  *> 
  *>   -- Content type of the message
  *>   content-type                            ContentType,
  *> 
  *>   --
  *>   -- THE CONTENT --
  *>   --
  *> 
  *>   -- The submission content
  *>   content                                 ANY DEFINED BY content-type
  *> };
  *> 

And you need transition words, like "The fields are:".

  *> 
  *> Security
  *> 
  *> 
  *> See Section 3.4.1, "SecurityElements".
  *> 
  *> 
  *> Segment-info
  *> 
  *> 
  *> See Section 3.4.2, "Message Segmentation and Reassembly".
  *> 
  *> 
  *> Content-type
  *> 
  *> 
  *> This argument identifies the type of the content of the message.  It
  *> identifies the abstract syntax and the encoding rules used.
  *> 
  *> Banan                     Informational                      [Page 15]
  *> 
  *> 
  *> 
  *> 
  *> Content
  *> 
  *> This argument contains the information the message is intended to
  *> convey to the recipient(s).  It shall be generated by the originator
  *> of the message.
  *> 
  *> 
  *> 
  *> Results
  *> 
  *> This operation's results are:
  *> 
  *> 
  *> SubmitResult ::= SEQUENCE
  *> 
  *>     {
  *>         -- Permanent identifier for this message.
  *>         -- Also contains the message submission time.
  *>         -- See comment regarding assignment of message identifiers,
  *>         -- at the definition of EMSDLocalMessageId.
  *> 
  *>         message-id                              EMSDLocalMessageId
  *>     };
  *> 
  *> 
  *> 
  *> Message-id
  *> 
  *> This result contains an EMSD-SA-identifier that uniquely and
  *> unambiguously identifies the message-submission.  It shall be
  *> generated by the EMSD-SA.
  *> 
  *> 
  *> 
  *> Errors
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 
  *> 3.2.2  deliveryControl
  *> 
  *> The deliveryControl ES-OPERATION enables the EMSD-UA to temporarily
  *> limit the operations that the EMSD-SA may invoke, and the messages
  *> that the EMSD-SA may deliver to the EMSD-UA via the Message delivery
  *> ES-OPERATION.
  *> 
  *> 
  *> deliveryControl ES-OPERATION
  *>     ARGUMENT DeliveryControlArgument
  *> 
  *> 
  *> Banan                     Informational                      [Page 16]
  *> 
  *> 
  *> 
  *> 
  *>     RESULT DeliveryControlResult
  *>     ERRORS
  *>     {
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 2;
  *> 
  *> 
  *> The duplicate operation detection is not required for this operation.
  *> 
  *> The EMSD-SA shall hold until a later time, rather than abandon,
  *> ES-OPERATIONS and messages that are presently suspended.
  *> 
  *> The successful completion of the ES-OPERATION signifies that the
  *> specified controls are now in force.
  *> 
  *> The ES-OPERATION returns an indication of any ES-OPERATIONS that the
  *> EMSD-SA would invoke, or any message types that the EMSD-SA would
  *> deliver, were it not for the prevailing controls.
  *> 
  *> 
  *> Arguments
  *> 
  *> 
  *> This operation's arguments are:
  *> 
  *> 
  *> DeliveryControlArgument ::= SEQUENCE
  *> {
  *>   -- Request an addition of or removal of a set of restrictions
  *> 
  *>   restrict                [0]     IMPLICIT Restrict DEFAULT update,
  *> 
  *>   -- Which operations are to be placed in the restriction set
  *>   permissible-operations  [1]     IMPLICIT Operations OPTIONAL,
  *> 
  *>   -- What maximum content length should be allowed
  *>   permissible-max-content-length
  *> 
  *>                                   [2]     IMPLICIT INTEGER
  *>                                    (0..ub-content-length) OPTIONAL,
  *> 
  *>   -- What is the lowest priority message which may be delivered
  *>   permissible-lowest-priority
  *> 
  *>                                   [3]     IMPLICIT ENUMERATED
  *>                                            {
  *>                                              non-urgent     (0),
  *>                                              normal         (1),
  *>                                              urgent         (2)
  *> 
  *> Banan                     Informational                      [Page 17]
  *> 
  *> 
  *> 
  *> 
  *>                                            } OPTIONAL,
  *> 
  *>   -- Security features
  *>   security                        [4]     IMPLICIT SecurityElement
  *>                                           OPTIONAL,
  *> 
  *>   -- User Feature selection
  *>   user-features                   [5]     IMPLICIT OCTET STRING
  *>                                           OPTIONAL
  *> };
  *> 
  *> 
  *> Restrict
  *> 
  *> 
  *> This argument indicates whether the controls on ES-OPERATIONS are to
  *> be updated or removed.  It may be generated by the EMSD-UA.
  *> 
  *> This argument may have one of the following values:
  *> 
  *> 
  *>   o update:  The other arguments update the prevailing controls;
  *> 
  *>   o remove:  All temporary controls are to be removed
  *> 
  *> 
  *> In the absence of this argument, the default update shall be assumed.
  *> 
  *> 
  *> Permissible-operations
  *> 
  *> 
  *> This argument indicates the ES-OPERATIONS that the EMSD-SA may invoke
  *> on the EMSD-UA. It may be generated by the EMSD-UA.
  *> 
  *> This argument may have the value allowed or prohibited for each of the
  *> following:
  *> 
  *> 
  *>   o message-delivery:  The EMSD-SA may/may not invoke the deliver
  *>     ES-OPERATIONS; and
  *> 
  *>   o Other ES-OPERATIONS are not subject to controls, and may be
  *>     invoked at any time.
  *> 
  *> 
  *> In the absence of this argument, the ES-OPERATIONS that the EMSD-SA
  *> may invoke on the EMSD-UA are unchanged.
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 18]
  *> 
  *> 
  *> 
  *> 
  *> Permissible-max-content-length
  *> 
  *> This argument contains the content-length, in octets, of the
  *> longest-content message that the EMSD-SA shall deliver to the EMSD-UA
  *> via the deliver ES-OPERATIONS. It may be generated by the EMSD-UA.
  *> 
  *> In the absence of this argument, the
  *> permissible-maximum-content-length of a message that the EMSD-SA may
  *> deliver to the EMSD-UA is unchanged.
  *> 
  *> 
  *> 
  *> Permissible-lowest-priority
  *> 
  *> This argument contains the priority of the lowest priority message
  *> that the EMSD-SA shall deliver to the EMSD-UA via the deliver
  *> ES-OPERATIONS. It may be generated by the EMSD-UA.
  *> 
  *> This argument may have one of the following values of the priority
  *> argument of the submit ES-OPERATIONS: normal, non-urgent or urgent.
  *> 
  *> In the absence of this argument, the priority of the lowest priority
  *> message that the EMSD-SA shall deliver to the EMSD-UA is unchanged.
  *> 
  *> 
  *> 
  *> Security
  *> 
  *> See Section 3.4.1, "SecurityElements".
  *> 
  *> 
  *> 
  *> User-features
  *> 
  *> This argument contains information that allows the EMSD-UA to convey
  *> to MTS the feature set that the user is capable of supporting.  This
  *> argument will be defined when the setConfiguration and
  *> getConfiguration operations are defined.
  *> 
  *> 
  *> 
  *> Results
  *> 
  *> DeliveryControlResult ::= SEQUENCE
  *> {
  *>   -- Operation types queued at the EMSD-SA due to existing
  *>   -- restrictions.
  *>   waiting-operations      [0]     IMPLICIT Operations DEFAULT { },
  *> 
  *>   -- Types of messages queued at the EMSD-SA due to
  *> 
  *> 
  *> Banan                     Informational                      [Page 19]
  *> 
  *> 
  *> 
  *> 
  *>   -- existing restrictions
  *>   waiting-messages        [1]     IMPLICIT WaitingMessages
  *>                                   DEFAULT { },
  *> 
  *>   -- Content Types of messages queued at the EMSD-SA
  *>   waiting-content-types   SEQUENCE SIZE (0..ub-content-types) OF
  *>                                          ContentType DEFAULT { }
  *> 
  *> };
  *> 
  *> Restrict ::= ENUMERATED
  *> {
  *>     update                                      (1),
  *>     remove                                      (2)
  *> };
  *> 
  *> Operations ::= BIT STRING
  *> {
  *>     submission                                  (0),
  *>     delivery                                    (1)
  *> };
  *> 
  *> WaitingMessages ::= BIT STRING
  *> {
  *>     long-content                                (0),
  *>     low-priority                                (1)
  *> };
  *> 
  *> 
  *> Waiting-operations
  *> 
  *> 
  *> This result indicates the ES-OPERATIONS being held by the EMSD-SA, and
  *> that the EMSD-SA would invoke on the EMSD-UA if it were not for the
  *> prevailing controls.  It may be generated by the EMSD-SA.
  *> 
  *> This result may have the value holding or not-holding for each of the
  *> following:
  *> 
  *> 
  *>   o message-delivery:  The EMSD-SA is/is not holding messages, and
  *>     would invoke the deliver ES-OPERATIONS on the EMSD-UA if it were
  *>     not for the prevailing controls.
  *> 
  *> 
  *> In the absence of this result, it may be assumed that the EMSD-SA is
  *> not holding any messages for delivery due to the prevailing controls.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 20]
  *> 
  *> 
  *> 
  *> 
  *> Waiting-messages
  *> 
  *> This result indicates the kind of messages the EMSD-SA is holding for
  *> delivery to the EMSD-UA, and would deliver via the deliver
  *> ES-OPERATIONS, if it were not for the prevailing controls.  It may be
  *> generated by the EMSD-SA.
  *> 
  *> This result may have one or more of the following values:
  *> 
  *> 
  *>   o long-content:  The EMSD-SA has messages held for delivery to the
  *>     EMSD-UA which exceed the permissible maximum-content-length
  *>     control currently in force;
  *> 
  *>   o low-priority:  The EMSD-SA has messages held for delivery to the
  *>     EMSD-UA of a lower priority than the permissible-lowest-priority
  *>     control currently in force;
  *> 
  *> 
  *> In the absence of this result, it may be assumed that the EMSD-SA is
  *> not holding any messages for delivery to the EMSD-UA due to the
  *> permissible-maximum-content- length, permissible-lowest-priority or
  *> permissible-security context controls currently in force.
  *> 
  *> 
  *> 
  *> Errors
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 
  *> 3.2.3  deliveryVerify
  *> 
  *> The deliveryVerify ES-OPERATIONS enables the EMSD-UA to verify
  *> delivery of a message when it receives FAILURE.indication for deliver
  *> ES-OPERATIONS.
  *> 
  *> 
  *> deliveryVerify ES-OPERATION
  *> 
  *>     ARGUMENT DeliveryVerifyArgument
  *>     RESULT DeliveryVerifyResult
  *>     ERRORS
  *>     {
  *>         verifyError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 5;
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 21]
  *> 
  *> 
  *> 
  *> 
  *> The duplicate operation detection is not required for this operation.
  *> 
  *> 
  *> Arguments
  *> 
  *> 
  *> This operation's arguments are:
  *> 
  *> 
  *> DeliveryVerifyArgument ::= SEQUENCE
  *> 
  *> {
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   message-id                                      EMSDMessageId
  *> };
  *> 
  *> 
  *> Message-id
  *> 
  *> 
  *> This argument contains an EMSD-SA-identifier that distinguishes the
  *> message from all other messages.  It shall be generated by the
  *> EMSD-SA, and shall have the same value as the
  *> message-submission-identifier supplied to the originator of the
  *> message when the message was submitted.
  *> 
  *> 
  *> Results
  *> 
  *> 
  *> DeliveryVerifyResult ::= SEQUENCE
  *> {
  *>          status  DeliveryStatus
  *> };
  *> 
  *>  DeliveryStatus  ::= ENUMERATED
  *> {
  *>         no-report-is-sent-out                   (1),
  *>         delivery-report-is-sent-out             (2),
  *>         non-delivery-report-is-sent-out         (3)
  *>  };
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 22]
  *> 
  *> 
  *> 
  *> 
  *> No-report-is-sent-out
  *> 
  *> This result indicates that EMSD-SA has received the delivery verify
  *> and no report is sent out (either because it has not been requested or
  *> EMSD-SA has problems and can not send it out).
  *> 
  *> 
  *> 
  *> Delivery-report-is-sent-out
  *> 
  *> This result indicates that EMSD-SA has received the delivery verify
  *> and has sent the delivery report out.
  *> 
  *> 
  *> 
  *> Non-Delivery-report-is-sent-out
  *> 
  *> This result indicates that EMSD-SA has received the delivery verify
  *> but it has already sent out a non-Delivery report.  This should not
  *> happen in normal cases but a wrong user profile on EMSD-SA side can
  *> result in this outcome.
  *> 
  *> 
  *> 
  *> Errors
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 3.3  EMSD-SA Invoked Operations
  *> 
  *> This section defines the operations invoked by the EMSD-SA:
  *> 
  *> 
  *>  a. deliver;
  *> 
  *>  b. submissionControl;
  *> 
  *>  c. submissionVerify.
  *> 
  *> 
  *> The deliver operation uses 3-Way handshake service of ESROS. This
  *> operation always uses the duplication detection functional unit.
  *> 
  *> The submissionControl and submissionVerify operations use 2-Way
  *> handshake service of ESROS without duplication detection.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 23]
  *> 
  *> 
  *> 
  *> 
  *> 3.3.1  deliver
  *> 
  *> The deliver ES-OPERATIONS enables the EMSD-SA to deliver a message to
  *> an EMSD-UA.
  *> 
  *> 
  *> deliver ES-OPERATION
  *> 
  *>     ARGUMENT DeliverArgument
  *>     RESULT NULL
  *>     ERRORS
  *>     {
  *>         deliveryControlViolated,
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation,
  *>         messageError
  *>     } ::= 35;
  *> 
  *> 
  *> The EMSD-UA SHALL not refuse performing the deliver ES-OPERATION

Capitalized SHALL is not defined in section 1.6.  Do you mean MUST?

  *> unless the delivery would violate the deliveryControl restrictions
  *> then in force.
  *> 
  *> 
  *> 
  *> Arguments
  *> 
  *> This operation's arguments are:
  *> 
  *> 
  *> 
  *> DeliverArgument ::= SEQUENCE
  *> {
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   message-id                                      EMSDMessageId,
  *> 
  *>   -- Time the message was delivered to the recipient by EMSD-SA
  *>   message-delivery-time                           DateTime,
  *> 
  *>   -- Time EMSD-SA originally took responsibility for processing
  *>   -- of this message. This field shall be omitted if the message-id
  *>   -- contains an EMSDLocalMessageId, because that field contains
  *>   -- the submission time within it.
  *>   message-submission-time [0]  IMPLICIT DateTime OPTIONAL,
  *> 
  *>   -- Security features
  *> 
  *> 
  *> Banan                     Informational                      [Page 24]
  *> 
  *> 
  *> 
  *> 
  *>   security                [1]  IMPLICIT SecurityElement OPTIONAL,
  *> 
  *>   -- SegContentTypementation features for efficient transport
  *>   segment-info                              SegmentInfo OPTIONAL,
  *> 
  *>   -- The type of the content
  *>   content-type                                ContentType,
  *> 
  *>   --
  *>   -- THE CONTENT --
  *>   --
  *> 
  *>   -- The submitted (and now being delivered) content
  *>   content                           ANY DEFINED BY content-type
  *> };
  *> 
  *> 
  *> 
  *> message-id
  *> 
  *> 
  *> This argument contains an EMSD-SA-identifier that distinguishes the
  *> message from all other messages.  When within the EMSD, it SHALL be

SHALL->MUST

  *> generated by the EMSD-SA, and SHALL have the same value as the
  *> message-submission-identifier supplied to the originator of the
  *> message when the message was submitted.
  *> 
  *> 
  *> Message-delivery-time
  *> 
  *> 
  *> This argument contains the Time at which delivery occurs and at which
  *> the EMSD-SA is relinquishing responsibility for the message.  It shall
  *> be generated by the EMSD-SA.
  *> 
  *> 
  *> Results
  *> 
  *> 
  *> This operation returns an empty result as indication of success.
  *> 
  *> 
  *> Errors
  *> 
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 25]
  *> 
  *> 
  *> 
  *> 
  *> 3.3.2  submissionControl
  *> 
  *> submissionControl ES-OPERATION
  *>     ARGUMENT SubmissionControlArgument
  *>     RESULT SubmissionControlResult
  *>     ERRORS
  *>     {
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 4;
  *> 
  *> 
  *> The submissionControl ES-OPERATIONS enables the EMSD-SA to temporarily
  *> limit the operations that the EMSD-UA may invoke, and the messages
  *> that the EMSD-UA may submit to the EMSD-SA via the submit
  *> ES-OPERATIONS.
  *> 
  *> The duplicate operation detection is not required for this operation.
  *> 
  *> The EMSD-UA should hold until a later time, rather than abandon,
  *> ES-OPERATIONS and messages that are presently suspended.
  *> 
  *> The successful completion of the ES-OPERATIONS signifies that the
  *> specified controls are now in force.  These controls supersede any
  *> previously in force, and remain in effect until the association is
  *> released or the EMSD-SA re-invokes the submissionControl
  *> ES-OPERATIONS.
  *> 
  *> The ES-OPERATIONS returns an indication of any ES-OPERATIONS that the
  *> EMSD-UA would invoke were it not for the prevailing controls.
  *> 
  *> 
  *> 
  *> Arguments
  *> 
  *> This operation's arguments are:
  *> 
  *> 
  *> 
  *> SubmissionControlArgument ::= SEQUENCE
  *> {
  *>   -- Request an addition of or removal of a set of restrictions
  *>   restrict               [0]     IMPLICIT Restrict DEFAULT update,
  *> 
  *>   -- Which operations are to be placed in the restriction set
  *>   permissible-operations  [1]     IMPLICIT Operations OPTIONAL,
  *> 
  *>   -- What maximum content length should be allowed
  *>   permissible-max-content-length
  *> 
  *> 
  *> Banan                     Informational                      [Page 26]
  *> 
  *> 
  *> 
  *> 
  *>                           [2]     IMPLICIT INTEGER
  *>                                   (0..ub-content-length) OPTIONAL,
  *> 
  *>   -- Security features
  *>   security                [3]     IMPLICIT SecurityElement
  *>                                                   OPTIONAL
  *> };
  *> 
  *> 
  *> 
  *> Restrict
  *> 
  *> 
  *> This argument indicates whether the controls on ES-OPERATIONS are to
  *> be updated or removed.  It may be generated by the EMSD-SA.
  *> 
  *> This argument may have one of the following values:
  *> 
  *> 
  *>   o update:  The other arguments update the prevailing controls;
  *> 
  *>   o remove:  All temporary controls are to be removed
  *> 
  *> 
  *> In the absence of this argument, the default update shall be assumed.
  *> 
  *> 
  *> Permissible-operations
  *> 
  *> 
  *> This argument indicates the ES-OPERATIONS that the EMSD-UA may invoke
  *> on the EMSD-SA. It may be generated by the EMSD-SA.
  *> 
  *> This argument may have the value allowed or prohibited for each of the
  *> following:
  *> 
  *> 
  *>   o submit:  The EMSD-UA may/may not invoke the submit ES-OPERATIONS;
  *>     and
  *> 
  *>   o Other ES-OPERATIONS are not subject to controls, and may be
  *>     invoked at any time.
  *> 
  *> 
  *> In the absence of this argument, the ES-OPERATIONS that the EMSD-UA
  *> may invoke on the EMSD-SA are unchanged.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 27]
  *> 
  *> 
  *> 
  *> 
  *> Permissible-max-content-length
  *> 
  *> This argument contains the content-length, in octets, of the
  *> longest-content message that the EMSD-UA shall submit to the EMSD-SA
  *> via the submit ES-OPERATIONS. It may be generated by the EMSD-SA.
  *> 
  *> In the absence of this argument, the
  *> permissible-maximum-content-length of a message that the EMSD-UA may
  *> submit to the EMSD-SA is unchanged.
  *> 
  *> 
  *> 
  *> Security
  *> 
  *> See Section 3.4.1, "SecurityElements".
  *> 
  *> 
  *> 
  *> Results
  *> 
  *> SubmissionControlResult ::= SEQUENCE
  *> {
  *>   -- Operation types queued at the EMSD-SA due to existing
  *>   -- restrictions.
  *>   waiting-operations    [0]   IMPLICIT Operations DEFAULT { }
  *> 
  *> };
  *> 
  *> 
  *> 
  *> Waiting-operations
  *> 
  *> This result indicates the ES-OPERATIONS being held by the EMSD-UA, and
  *> that the EMSD-UA would invoke if it were not for the prevailing
  *> controls.  It may be generated by the EMSD-UA.
  *> 
  *> This result may have the value holding or not-holding for each of the
  *> following:
  *> 
  *> 
  *>   o submit:  The EMSD-UA is/is not holding messages, and would invoke
  *>     the submit ES-OPERATIONS if it were not for the prevailing
  *>     controls.
  *> 
  *> 
  *> In the absence of this result, it may be assumed that the EMSD-UA is
  *> not holding any messages for submission due to the prevailing
  *> controls.
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 28]
  *> 
  *> 
  *> 
  *> 
  *> Errors
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 
  *> 3.3.3  submissionVerify
  *> 
  *> The submissionVerify ES-OPERATIONS enables the EMSD-SA to verify if
  *> the EMSD-UA has received the result of its submission.
  *> 
  *> 
  *> submissionVerify  ES-OPERATION
  *> 
  *>     ARGUMENT SubmissionVerifyArgument
  *>     RESULT SubmissionVerifyResult
  *>     ERRORS
  *>     {
  *>         submissionVerifyError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 6;
  *> 
  *> 
  *> The duplicate operation detection is not required for this operation.
  *> 
  *> 
  *> 
  *> Arguments
  *> 
  *> This operation's arguments are:
  *> 
  *> 
  *> 
  *> SubmissionVerifyArgument ::= SEQUENCE
  *> 
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   {
  *>      message-id                                  EMSDMessageId
  *>   };
  *> 
  *> 
  *> 
  *> Message-id
  *> 
  *> This argument contains an EMSD-SA-identifier that distinguishes the
  *> message from all other messages.  It shall be generated by the
  *> 
  *> 
  *> Banan                     Informational                      [Page 29]
  *> 
  *> 
  *> 
  *> 
  *> EMSD-SA, and shall have the same value as the
  *> message-submission-identifier supplied to the originator of the
  *> message when the message was submitted.
  *> 
  *> 
  *> Results
  *> 
  *> 
  *> 
  *> SubmissionVerifyResult ::= SEQUENCE
  *> {
  *>         status  SubmissionStatus
  *> };
  *> 
  *> SubmissionStatus::= ENUMERATED
  *> {
  *>         send-message            (1),
  *>         drop-message            (2)
  *> };
  *> 
  *> 
  *> Send-message
  *> 
  *> 
  *> This result indicates that EMSD-SA is supposed to send the message
  *> out.
  *> 
  *> 
  *> Drop-message
  *> 
  *> 
  *> This result indicates that EMSD-SA is supposed to drop the message.
  *> 
  *> 
  *> Errors
  *> 
  *> 
  *> See Section 3.4.3.
  *> 
  *> 
  *> 3.4  EMSD Common Information Objects
  *> 
  *> 3.4.1  SecurityElements
  *> 
  *> SecurityElement ::= SEQUENCE
  *> 
  *> {
  *>   credentials                          Credentials,
  *>   contentIntegrityCheck                ContentIntegrityCheck OPTIONAL
  *> };
  *> 
  *> 
  *> Banan                     Informational                      [Page 30]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Credentials ::= CHOICE
  *> {
  *>   simple                          [0]     IMPLICIT SimpleCredentials
  *> 
  *>   -- Strong Credentials are for future study
  *>   -- strong                       [1]     IMPLICIT StrongCredentials
  *>   -- externalProcedure            [2]     EXTERNAL
  *> };
  *> 
  *> SimpleCredentials ::= SEQUENCE
  *> {
  *>   eMSDAddress                     EMSDAddress OPTIONAL,
  *>   password                [0]     IMPLICIT OCTET STRING
  *>                           SIZE (0..ub-password-length)) OPTIONAL
  *> };
  *> 
  *> -- StrongCredentials ::= NULL
  *> -- for now.

Using a password for a wireless network seems like pretty weak
security!?

  *> -- ContentIntegrityCheck is a 16-bit checksum of content
  *> ContentIntegrityCheck ::= INTEGER (0..65535);
  *> 
  *> 
  *> 3.4.2  Message Segmentation and Reassembly
  *> 
  *> 
  *> Small messages can benefit from the efficiencies of connectionless
  *> feature of ESROS (See Efficient Short Remote Operations).

(Section #?)

  *> 
  *> Very large messages are transferred using the Connection Oriented
  *> Transport Service.

WHAT is the "Connection Oriented Transport Service"??

  *> 
  *> When a message is too large to fit in a single connectionless PDU but
  *> is not large enough to justify the overhead of connection
  *> establishment, it may be more efficient for the message to be
  *> segmented and reassembled while the connectionless service of ESROS is
  *> used.  If the underlying Remote Operation Service is capable of
  *> efficient segmentation/reassembly over connectionless (CL) services,
  *> then use of the segmenting/reassembly mechanism introduced in this
  *> section is not necessary.  This feature is accommodated in this layer
  *> by:
  *> 

It *sounds* as if you have two layers of fragmentation, one in ESRO
and one in EMSD.

  *> 
  *> SegmentInfo ::= CHOICE
  *> 
  *> {
  *>   first           [APPLICATION 2]         IMPLICIT FirstSegment,
  *>   other           [APPLICATION 3]         IMPLICIT OtherSegment
  *> };
  *> 
  *> FirstSegment ::= SEQUENCE
  *> 
  *> Banan                     Informational                      [Page 31]
  *> 
  *> 
  *> 
  *> 
  *> {
  *>   sequence-id                             INTEGER,
  *>   number-of-segments                      INTEGER
  *>   -- number-of-segments must not exceed ub-total-number-of-segments
  *> };
  *> 
  *> OtherSegment ::= SEQUENCE
  *> {
  *>   sequence-id                             INTEGER,
  *>   segment-number                          INTEGER
  *> };
  *> 
  *> 
  *> Segmentation and reassembly only applies to Message-submission and
  *> Message-delivery.
  *> 
  *> The sender of the message is responsible for segmenting the message
  *> content into segments that fit in CL PDUs.  The segmented content is
  *> sent in a sequence of message- segments each carrying a segment of the
  *> content.  sequence-Id is a unique identifier that is present in all
  *> message-segments.  In addition to sequence identifier, the first
  *> message- segment specifies the total number of segments
  *> (number-of-segments).  Other message- segments have a segment sequence
  *> number (segment-number).  The receiver is responsible for sequencing
  *> (based on segment-number) and reassembling the entire message.
  *> 
  *> 
  *> Segmenting over the Connectionless ESRO Service
  *> 
  *> 
  *> The sender of the message maps the original message into an ordered
  *> sequence of message-segments.  This sequence shall not be interrupted
  *> by other messages over the same ESROS association.
  *> 
  *> All message-segments in the sequence shall be assigned a sequence
  *> identifier by sender.  The sequence identifier shall be incremented by
  *> one by the sender after transmission of a complete message sequence.
  *> 
  *> The first message-segment specifies the total number of segments.  All
  *> message- segments in the sequence except the first one shall be
  *> sequentially numbered, starting at 1 (first message-segment has
  *> implicit segment number of 0).
  *> 
  *> Each message-segment is transmitted by issuing a Message-submission or
  *> Message-delivery ES-OPERATIONS. All segments of a segmented message
  *> are identified by the same sequence-id.  For a given message, the
  *> receiver should not impose any restriction on the order of arrival of
  *> message-segments.
  *> 
  *> There is no requirement that any message-segment content be of maximum
  *> length allowed by ESROS for connectionless transmission; however, no
  *> 
  *> Banan                     Informational                      [Page 32]
  *> 
  *> 
  *> 
  *> 
  *> more than ub-total- number-of-segments segments can be derived from a
  *> single message.
  *> 

                space   ^

  *> The receiver reassembles a sequence of message-segments into a single
  *> message.  A message shall not be further processed unless all segments
  *> of the message are received.  Failure to receive the message shall be
  *> determined by the following events:
  *> 
  *> 
  *>   o Expiration of Reassembly Timer (see Section 3.4.3).
  *> 
  *>   o Receipt of a message-segment with different sequence identifier.
  *> 
  *> 
  *> In the event of the above mentioned failures, the receiver shall
  *> discard a partially assembled sequence.
  *> 
  *> In Reassembly process, all arguments other than content are ignored in
  *> all segments except the first one.  The content parts of all segments
  *> are concatenated to compose the original message content.
  *> 
  *> When sender receives FAILURE.indication (as opposed to a
  *> resourceError) for a message-segment, the whole message shall be
  *> retransmitted.
  *> 
  *> In the case of submission and delivery operations, the verify function
  *> is used as described below:
  *> 
  *> Receiver ignores FAILURE.indications received for message-segments,
  *> and just collects the message-segments to complete the message.
  *> However, it keeps a failure status for a segmented message which says
  *> if any segment of the message has received FAILURE.indication.  When
  *> receiver succeeds to assemble the whole segmented message, then if the
  *> status of the message shows there has been a FAILURE.indication for
  *> any of the message-segments, it verifies the message through verify
  *> operation.  It's not enough to invoke verify operation just based on
  *> the last message-segment because the sender might send a segment
  *> without waiting for the result of the previous segment.  In such
  *> cases, there might be any combination of success and failure for
  *> message- segments on the sender side.
  *> 
  *> Receiver uses the error code ResourceError (see Section 3.4.3) to ask
  *> for retransmission of a single segment and uses the error code
  *> MessageError (see Section 3.4.3) to ask for retransmission of all
  *> segments (the whole message).
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 33]
  *> 
  *> 
  *> 
  *> 
  *> Reassembly Timer
  *> 
  *> The Reassembly Timer is a local timer maintained by the receiver of
  *> message-segments that assists in performing the reassembly function.
  *> This timer determines how long a receiver waits for all segments of a
  *> message-segment sequence to be received.  The timer protects the
  *> receiver from the loss of a series of segments and possible sequence
  *> identifier wrap-around.
  *> 
  *> The Reassembly Timer shall be started on receipt of a message-segment
  *> with different sequence identifier than that previously received.  The
  *> timer shall be stopped on receipt of all segments composing the
  *> sequence.
  *> 
  *> The value of Reassembly Timer is defined based on the network
  *> characteristics and the number of segments.  This requires that the
  *> transmission of all segments of a single message must be completed
  *> within this time limit.
  *> 
  *> 
  *> 
  *> 3.4.3  Common Errors
  *> 
  *> protocolVersionNotRecognized  ERROR PARAMETER NULL ::= 1;
  *> 
  *> submissionControlViolated  ERROR PARAMETER NULL ::= 2;
  *> 
  *> messageIdentifierInvalid  ERROR PARAMETER NULL ::= 3;
  *> 
  *> securityError ERROR PARAMETER security-problem SecurityProblem ::= 4;
  *> 
  *> deliveryControlViolated   ERROR PARAMETER NULL ::= 5;
  *> 
  *> resourceError  ERROR PARAMETER NULL ::= 6;
  *> 
  *> protocolViolation  ERROR PARAMETER NULL ::= 7;
  *> 
  *> messageError  ERROR PARAMETER NULL ::= 8;
  *> 
  *> SecurityProblem ::= INTEGER (0..127);
  *> 
  *> 
  *> 
  *> protocolVersionNotRecognized
  *> 
  *> The major and minor protocol versions presented do not match those
  *> recognized as being valid.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 34]
  *> 
  *> 
  *> 
  *> 
  *> submissionControlViolated
  *> 
  *> The Submission control violated error reports the violation by the
  *> MTS-user of a control on submission services imposed by the MTS via
  *> the Submission control service.  The Submission control violated
  *> abstract-error has no parameters.
  *> 
  *> 
  *> 
  *> messageIdentifierInvalid
  *> 
  *> The Message Identifier Invalid error reports that the Message
  *> Identifier presented to the MTS is not considered valid.
  *> 
  *> 
  *> 
  *> securityError
  *> 
  *> The Security error reports that the requested operation could not be
  *> provided by the MTS or MTS-user because it would violate the security
  *> policy in force.
  *> 
  *> 
  *> 
  *> deliveryControlViolated
  *> 
  *> The Delivery control violated error reports the violation by the MTS
  *> of a control on delivery operations imposed by the MTS-user via the
  *> Delivery-control operation.
  *> 
  *> 
  *> 
  *> resourceError
  *> 
  *> The messaging agent cannot currently support this operation.  In the
  *> case of segmentation and reassembly, resourceError is by the receiver
  *> used to request that the sender retransmit of a single segment.
  *> 
  *> 
  *> 
  *> protocolViolation
  *> 
  *> Indicates that one or more mandatory argument(s) were missing.
  *> 
  *> 
  *> 
  *> messageError
  *> 
  *> For a multi-segment message, this error indicates that the messaging
  *> agent has not received the message completely and that the message
  *> 
  *> 
  *> Banan                     Informational                      [Page 35]
  *> 
  *> 
  *> 
  *> 
  *> must be retransmitted.
  *> 
  *> 
  *> SecurityProblem
  *> 
  *> 
  *> To ensure the security-policy is not violated during delivery, the
  *> message-security-label is checked against the security-context.  If
  *> delivery is barred by the security -policy then, subject to the
  *> security policy, a report instruction for this is generated.
  *> 
  *> 
  *> 3.4.4  ContentType
  *> 
  *> 
  *> ContentType ::=  INTEGER
  *> {
  *>   -- Content type 0 is reserved and shall never be transmitted.
  *>   reserved                                        (0),
  *>   -- Content types between 1 and 31 (inclusive) are for
  *>   -- internal-use only
  *>   probe                                           (1),
  *>   delivery-report                                 (2),
  *> 
  *>   -- Content types between 32 and 63 (inclusive) are for
  *>   -- message types  defined within this and associated standards.

?? Who sets these standards, and how are they documented?

  *>   emsd-interpersonal-messaging-1995               (32),
  *>   voice-messaging                                 (33)
  *> 
  *>   -- Content types beyond and including 64 are for
  *>   -- bilaterally-agreed use between peers.
  *> } (0..127);
  *> 
  *> 
  *> 3.4.5  EMSDMessageId
  *> 
  *> 
  *> If this message was originated as an RFC-822 message, then this
  *> EMSDMessageId shall be the ``Message-Id:" field from that message.  If
  *> this message was originated within the EMSD domain, then this
  *> identifier shall be unique for the Message Center generating this id.
  *> 
  *> 
  *> EMSDMessageId ::= CHOICE
  *> {
  *>   EMSDLocalMessageId  [APPLICATION 4]
  *>                       IMPLICIT EMSDLocalMessageId,
  *> 
  *>   rfc822MessageId     [APPLICATION 5]
  *>                       IMPLICIT AsciiPrintableString
  *>                       (SIZE (0..ub-message-id-length))
  *> 
  *> Banan                     Informational                      [Page 36]
  *> 
  *> 
  *> 
  *> 
  *> };
  *> 
  *> EMSDLocalMessageId ::= SEQUENCE
  *> {
  *>   submissionTime            DateTime,
  *>   messageNumber             INTEGER (0..ub-local-message-nu)
  *> };
  *> 
  *> 
  *> 3.5.6 EMSDORAddress
  *> 
  *> 
  *> 
  *> EMSDORAddress ::= CHOICE
  *> {
  *>   -- This is the local-format address
  *>   emsd-local-address-format            EMSDAddress,
  *> 
  *>   -- This is a globally-unique RFC-822 Address
  *>   rfc822DomainAddress                 AsciiPrintableString
  *> };
  *> 
  *> 
  *> In the global sense Originators and Recipients are represented by
  *> EMSDORAddress.  The rfc822Domain may be used to address any recipient.
  *> 
  *> 
  *> 3.4.6  EMSDAddress
  *> 
  *> 
  *> EMSDAddress ::= SEQUENCE
  *> {
  *>   emsd-address        OCTET STRING (SIZE
  *>                       (1..ub-emsd-address-length)),
  *> 
  *>   -- emsd-address is a decimal integer in BCD
  *>      (Binary Encoded Decimal) format.
  *>   -- If it had an odd number of digits, it is
  *>   -- padded with 0 on the left.
  *> 
  *>   emsd-name          [0]  IMPLICIT OCTET STRING
  *>                           (SIZE (0..ub-emsd-name-length))
  *>                           OPTIONAL
  *> };
  *> 
  *> 
  *> Originator and Recipients in the scope of EMSD network are identified
  *> by a digit based addressing scheme.  EMSDAddress can only be used
  *> where the scope of addressing has clearly been limited to the EMSD
  *> network.
  *> 
  *> 
  *> Banan                     Informational                      [Page 37]
  *> 
  *> 
  *> 
  *> 
  *> 3.4.7  DateTime
  *> 
  *> DateTime ::= INTEGER;
  *> 
  *> 
  *> DateTime is a Julian date, expressed as the number of seconds since
  *> 00:00:00 UTC, January 1, 1970.
  *> 
  *> 
  *> 
  *> 3.4.8  AsciiPrintableString
  *> 
  *> Iso8859String ::=  GeneralString;
  *> 
  *> AsciiPrintableString ::= [APPLICATION 0]
  *>                          IMPLICIT Iso8859String (FROM
  *> 
  *>     (" "|"!"|"#"|"$"|"%"|"&"|"'"|"("|")"|"*"|"+"|","|"-"|"."|"/"|
  *>      "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|":"|";"|"<"|"="|">"|
  *>      "?"|"@"|"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
  *>      "N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"|"["|"]"|
  *>      "^"|"_"|"`"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|"l"|
  *>      "m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"w"|"x"|"y"|"z"|"{"|
  *>      "|"|"}"|"~"|"\"|""""));
  *> 
  *> 
  *> 
  *> 3.4.9  ProtocolVersionNumber
  *> 
  *> ProtocolVersionNumber ::= [APPLICATION 1]    SEQUENCE
  *> {
  *>   version-major                   INTEGER,
  *>   version-minor           [0]     IMPLICIT INTEGER DEFAULT 0
  *> }
  *> 
  *> 
  *> 3.5  Submission and Delivery Procedures
  *> 
  *> Table 1 provides a comprehensive summary of EMSD-P operations, the SAP
  *> selectors used and the operation IDs used.
  *> 
  *> 
  *> 
  *> Submission
  *> 
  *> The semantics of a submission operation is Exactly Once.  Exactly Once
  *> means that every operation is carried out exactly one time, no more
  *> and no less.  This semantic can not be fully implemented because, if
  *> after invoking the operation, an invoker has a Success (e.g.  result)
  *> indication and the performer has a FAILURE.indication, and the network
  *> 
  *> 
  *> Banan                     Informational                      [Page 38]
  *> 
  *> 
  *> 
  *> 
  *> +------------------+-------+----+---------+----+---------+-----+-----+
  *> |Operation         |Invoker|Sap |Performer|Sap |Duplicate|OpId |ESROS|
  *> |                  |       |Sel |         |Sel |Detect   |     |Use  |
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |submit            |UA     |4   |MTS      |5   |Yes      |33   |3-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |deliver           |MTS    |2   |UA       |3   |Yes      |35   |3-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |deliveryControl   |UA     |8   |MTS      |9   |No       |2    |2-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |submissionControl |MTS    |6   |UA       |7   |No       |4    |2-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |submissionVerify  |MTS    |6   |UA       |7   |No       |6    |2-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |deliveryVerify    |UA     |8   |MTS      |9   |No       |5    |2-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |getConfiguration  |UA     |8   |MTS      |9   |No       |7    |2-Way|
  *> |__________________|_______|____|_________|____|_________|_____|_____|
  *> |setConfiguration  |MTS    |6   |UA       |7   |No       |8    |2-Way|
  *> +------------------+-------+----+---------+----+---------+-----+-----+
  *> 
  *> 
  *>                  Table 1:  EMSD-P Operations Summary
  *> 
  *> goes down, the result of the operation will be Zero (and not Exactly
  *> Once).
  *> 
  *> No more than one is controlled and guaranteed by the performer by
  *> using the Duplicate Operation Detection Support Functions (see the
  *> chapter entitled Duplicate Operation Detection Support).
  *> 
  *> Not zero but one is realized by performer by using the
  *> SubmissionVerify operation.  When the performer receives
  *> FAILURE.indication, it's responsibility is to resolve the case by
  *> using SubmissionVerify resulting in Not zero but one.
  *> 
  *> Submission procedure is as follows:
  *> 
  *> 
  *>   o Submit operation with 3-Way handshake and Duplicate Operation
  *>     Detection Support Function is invoked.

And the Message Center (Note that you have switched from your
earlier user/server terminology to device/Message Center) does not
forward the message until the 3WHS has completed.  That was, I
presume, the import of the long example you gave in response to
my earlier question.

  *> 
  *>   o If performer at Message Center receives FAILURE.indication, it
  *>     invokes SubmissionVerify.
  *> 
  *>   o Message is sent out by Message Center only if result operation is
  *>     confirmed or the operation is verified (in the case of
  *>     FAILURE.indication).
  *> 

It is unclear to me what failure mode the verify request protects
against.  When might there be a FAILURE.indication but SubmissionVerify
succeeds?

  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 39]
  *> 
  *> 
  *> 
  *> 
  *> The semantic of SubmissionVerify operation is At Least Once.  This
  *> type of semantics corresponds to the case that invoker keeps trying
  *> over and over until it gets a proper reply.  This operation can be
  *> performed more than once without any harm.
  *> 
  *> Implications:
  *> 
  *> 
  *>   o MTS sends out the message if and only if it's sure that UA knows
  *>     about it.
  *> 
  *> 
  *> Delivery
  *> 
  *> 
  *> The semantics of Deliver operation is Exactly Once.  Exactly Once
  *> means that every operation is carried out exactly one time, no more
  *> and no less.  This semantic can not be fully implemented and if after
  *> invoking the operation, invoker has Success indication and performer
  *> has FAILURE.indication, and the network goes down, the result of the
  *> operation will be Zero (and not Exactly Once).
  *> 
  *> No more than one is controlled and guaranteed by performer and by
  *> using the Duplicate Operation Detection Support Functions.
  *> 
  *> Not zero but one is realized by performer by using the DeliveryVerify
  *> operation.  When performer receives FAILURE.indication, it's
  *> responsible to resolve the case by using DeliveryVerify resulting in
  *> Not zero but one.
  *> 
  *> Delivery procedure is as follows:
  *> 
  *> 
  *>   o Deliver operation with 3-Way handshake is invoked.
  *> 
  *>   o If performer at User Agent (device) receives FAILURE.indication,
  *>     it invokes DeliveryVerify.
  *> 
  *> 
  *> The semantic of DeliveryVerify operation is At Least Once.  This type
  *> of semantics corresponds to the case that invoker keeps trying over
  *> and over until it gets a proper reply.  This operation can be
  *> performed more than once without any harm.
  *> 
  *> Implications:
  *> 
  *> 
  *>   o A non-delivery report is sent by MTS only if the message is not
  *>     delivered.

Do you mean this precisely as stated?  If so, it is not very
reassuring.

Suppose a message is submitted, the MC replies OK, then crashes.
The terminal sends its final ACK to complete the 3WHS, but the
message is lost.  What is missing is SMTP's "accept" message.

  *> 
  *>   o The UA is responsible for notifying the MTS to make sure that a
  *> 
  *> Banan                     Informational                      [Page 40]
  *> 
  *> 
  *> 
  *> 
  *>     delivery report is sent out.

?? How?

  *> 
  *> 
  *> 4  DUPLICATE OPERATION DETECTION SUPPORT
  *> 
  *> 4.1  Duplicate Operation Detection Support Overview
  *> 
  *> Some operations are idempotent in nature, i.e.  they can be performed
  *> more than once without any harm.  However, some other operations are
  *> non-idempotent in nature, i.e.  they should be performed only once.
  *> In the case of non-idempotent operations, performer should be able to
  *> detect duplicate operations and perform each non- idempotent operation
  *> only once.
  *> 
  *> Examples of non-idempotent operations are Submission and Delivery of
  *> messages which shouldn't be performed more than once.  Examples of
  *> idempotent operations are Submission-control and Delivery-control
  *> which can be performed more than once with no harm.
  *> 
  *> ESRO Services don't detect duplicate invocation of operations.  As a

I thought that ESRO provided exactly-once delivery.

  *> result, the Duplicate Operation Detection Support Functional Unit is

What is a "functional unit"?

  *> used to detect duplication when the same operation instance is invoked
  *> more than once.  Invoker assigns an Operation Instance Identifier to
  *> an operation and this Operation Instance Identifier is used at the
  *> peer performer entity to detect the duplicate invocation of the same
  *> operation.
  *> 
  *> Using this support, non-idempotent operations can be repeated over and
  *> over with no harm because the duplicate invocations are detected by
  *> this functional unit.  This support helps the performer not to perform
  *> an operation more than once.
  *> 
  *> Support for duplication detection is realized through allocating
  *> Operation Instance Id (see Section 4.1.2, "Operation Instance
  *> Identifier") to an operation by invoker.  When an operation is invoked
  *> using duplication detection support, performer logs the Operation
  *> Instance Identifier and checks the next operations against
  *> duplication.
  *> 
  *> Operation value identifies whether performer should detect duplicate
  *> operations (see Section 4.1.1, ``Operation Value") and Operation
  *> Instance Id is assigned by invoker and sent as the first byte of
  *> operation's parameter.
  *> 
  *> 
  *> 4.1.1  Operation Value
  *> 
  *> 
  *> Operation Values are divided into two groups.  Operation values from 0
  *> to 31 do not have Duplicate Operation Detection Support (0 to 31) and
  *> operation values from 32 to 63 have Duplicate Operation Detection
  *> 
  *> Banan                     Informational                      [Page 41]
  *> 
  *> 
  *> 
  *> 
  *> Support.
  *> 
  *> Duplicate Operation Detection Functional Unit checks for duplication
  *> only if Operation Value is in the range of 32 to 63.
  *> 
  *> When invoker user uses an Operation Value in the range of 32 to 63
  *> which means operation with support for duplication detection, the user
  *> should specify an Operation Instance ID for the operation (see next
  *> section).
  *> 
  *> 
  *> 4.1.2  Operation Instance Identifier
  *> 
  *> 
  *> To support duplication detection, an Operation Instance Identifier is
  *> assigned by invoker user and sent as the first byte of the operation's
  *> parameter.  This identifier is used on performer side to detect
  *> duplicate invocation of the same operation.  Characteristics of
  *> Operation Instance Identifier is as follows:
  *> 
  *> 
  *>   o Operation Instance Identifier is one byte and can have values from
  *>     0 to 255.
  *> 
  *>   o Operation Instance Identifier is sent as the first byte of the
  *>     operations parameter (without encoding).
  *> 
  *>   o The length of Operation Instance Identifier is 8-bit, but
  *>     depending on the performer capabilities, it might keep 0 to 127
  *>     Operation Instance Identifiers for duplication detection.  The
  *>     performer profile defines the number of outstanding Operation
  *>     Instance Identifiers that are checked against duplication.  When a
  *>     performer profile indicates support for 0 outstanding Operation
  *>     Instance Identifier, it means it does not have support for
  *>     Duplicate Operation Detection.  In this case, there should be only
  *>     one outstanding operation at any point of time.

?? How can the invoker assure that?  It has not control over whether
the network makes delayed duplicates.  It has to wait for one
maximum segment lifetime before sending another request.

  *> 
  *>   o Instance ID check is not part of ESROS, per se.  Use of Duplicate
  *>     Detection is determined by EMSD-P. Operation Instance ID for
  *>     operations 32-63 is the first byte of the argument.  Duplicate
  *>     Detection suuport strips that byte.
  *> 
  *>   o The Instance ID is not subject to Basic Encoding Rules (BER).
  *> 
  *>   o The invoker user assigns the Operation Instance Identifier to the
  *>     operation at the time of requesting the invoke service.  The
  *>     Operation Value should be in the range of operation values with
  *>     duplication detection support, i.e.  32 to 63.
  *> 
  *>   o It's the responsibility of the user to choose Operation Instance
  *>     Identifier in a way that uniqely and unambiguously identifies the
  *> 
  *> Banan                     Informational                      [Page 42]
  *> 
  *> 
  *> 
  *> 
  *>     operation.
  *> 
  *>   o From the invoker's perspective, assumption is that two operations
  *>     with the same operation Instance Identifier are totally identical
  *>     which means they produce exact same results.
  *> 
  *>   o Operation Instance Identifier uniqely specifies a non-idempotent
  *>     operation and multiple invocations of such an operation will
  *>     eventually result in the same outcome because the duplicate
  *>     instances are identified and the operation is not performed more
  *>     than once.
  *> 
  *>   o From the performer's perspective, assumption is that two
  *>     operations with the same Operation Instance Identifier should be
  *>     executed once and once only.
  *> 
  *>   o If requested, the degree of duplication checked by Duplicate
  *>     Operation Detection Support Functional Unit on the performer's
  *>     side (i.e.  the total number of outstanding Operation Instance
  *>     Identifier kept) can be communicated with the invoker to
  *>     synchronize the invocations.
  *> 
  *>   o User of Duplicate Operation Detection Support is responsible to
  *>     behave based on the performer profile and its limitations in this
  *>     regard.  This behavior is defined based on the desired semantic of
  *>     the operation which is to be implemented.
  *> 
  *>   o On the performer side, when an Operation Instance Identifier is
  *>     received, a previous Operation Instance Identifier whose distance
  *>     to this latest one is greater than or equal to half of the
  *>     wrap-around range of the Operation Instance Identifier number is
  *>     expired, i.e.  for an 8-bit Operation Instance Identifier, the
  *>     distance of 128 causes an old Operation Instance Identifier to
  *>     expire.
  *> 
  *>   o It's the responsibility of the invoker user to use consecutive
  *>     Operation Instance Identifier numbers, or when it skips some
  *>     Operation Instance Identifiers, it should remember that if there
  *>     is an smaller Operation Instance Identifier on performer side with
  *>     the distance explained above, it will be expired.
  *> 

In other (fewer!) words, the 8 bit OIId is used as a modular sequence
space.

It is unclear why the performer needs to keep all the previous numbers;
it need only test for monotonicity.

  *> 
  *> 5  EMSD PROCEDURE FOR OPERATIONS
  *> 
  *> The following sections shows the procedures to be used in the
  *> implementation of the EMSD Message Transfer Server (MTS) and the EMSD
  *> User Agent (UA), with the option for 3-Way or 2-Way handshakes on
  *> operations which support them.
  *> 
  *> The MTS and the UA are event-driven.  Each waits for any of the
  *> possible event types, and, upon receiving an event, processes it.
  *> 
  *> Banan                     Informational                      [Page 43]
  *> 
  *> 
  *> 
  *> 
  *> After processing the event, the next event is waited upon.
  *> 
  *> 
  *> 5.1  MTS Behavior
  *> 
  *> The MTS is event-driven.

You already said that.

  *> 
  *> If it received an event from ESROS, then it could be any of the
  *> following types:
  *> 
  *> 
  *>   o Message submission indication;
  *> 
  *>   o Delivery verify indication;
  *> 
  *>   o Result indication for a submission verify operation;
  *> 
  *>   o Error indication for a submission verify operation;
  *> 
  *>   o Delivery control indication.

How about Result & Error indications for a submission control operation?

Also, an event must be completion of a 3WHS for message delivery.

  *> 
  *> 
  *> For an ESROS event responsibility is passed to the MTS performer
  *> (Section 5.1.1).
  *> 
  *> If the MTS received an event:
  *> 
  *> 
  *>   o for message delivery, from the RFC-822 mailer;
  *> 
  *>   o requesting submission controls upon the UA, or;
  *> 
  *>   o indicating an elapsed timer (meaning that it's time to re-attempt
  *>     a message delivery)
  *> 

This is very confusing!!  I can figure it out, but your job is to
organize it clearly enough so it is not a pain.

  *> 
  *> then responsibility is passed to the MTS invoker (Section 5.1.5).
  *> 
  *> 
  *> 5.1.1  MTS Performer
  *> 
  *> 
  *> The MTS performer is responsible for processing the following
  *> operations, received from ESROS:
  *> 
  *> 
  *>   o Message-submission
  *> 
  *>   o Delivery-control
  *> 
  *>   o Delivery-verify
  *> 
  *> Banan                     Informational                      [Page 44]
  *> 
  *> 
  *> 
  *> 
  *> The MTS performer should first make sure that it has received an
  *> INVOKE.indication.  Any other type of primitive shouldn't be occurring

What is an INVOKE.indication?

  *> at this point, and should be ignored.
  *> 
  *> If there's something wrong with the PDU or operation data, the MTS
  *> performer should send back an error to the proper invoker:
  *> 
  *> 
  *>  1. Send an ESROS Error Request, then go wait for a response (either a
  *>     confirmation or a failure indication).  The response is sent back
  *>     on the same SAP type on which the event occurred.
  *> 
  *>  2. Keep track of the type of request that was issued.
  *> 
  *> 
  *> If there isn't anything wrong with the PDU or operation data, then the
  *> MTS performer has received a valid event from ESROS. This could be any
  *> of the defined Submission and Delivery Protocol operations.
  *> 
  *> 
  *> 5.1.2  Message-submission
  *> 
  *> 
  *>  1. The Message-submission operation first checks to see which SAP
  *>     this Submit Request came in on.
  *> 
  *>  2. The request could have arrived as 2-Way SAP (see #3) or a 3-Way
  *>     SAP (see #7).

How can a Message Submission request arrive as a 2-way SAP?  This is
a clear protocol violation; why not just ignore it??!!

  *> 
  *>  3. If the event arrived on the 2-Way SAP, then send an error request.
  *>     All submissions must use the 3-way SAP. (Keep track of what
  *>     primitive was issued).
  *> 
  *>  4. Wait for a response to the request.  The response could be either
  *>     an ERROR.confirm (see #5) or a FAILURE.indication (see #6).
  *> 
  *>  5. The ERROR.request has been confirmed.  The UA knows that the
  *>     submitted message wasn't sent.  Since there was an error, there is
  *>     nothing more to do, so return.
  *> 
  *>  6. If the result to the ErrorRequest is a Failure.indication, it can
  *>     be assumed that either the UA has received nothing (the
  *>     ERROR.request PDU was lost), which means failure for the UA; or
  *>     that the 3-Way acknowledgment was lost, which means that the UA
  *>     has in fact received the ERROR.request PDU and knows about the
  *>     delivery failure.  Either way, the message can be ignored.  There
  *>     is nothing more to do, so return.
  *> 
  *>  7. If the event was received on the 3-Way SAP, then this is the
  *>     correct SAP on which to receive a Submit Request.  Send back a
  *>     Result Request and keep track of the primitive which was issued.
  *> 
  *> Banan                     Informational                      [Page 45]
  *> 
  *> 
  *> 
  *> 
  *>  8. Now wait for a response to our request.  The response will be
  *>     either a Result.confirm (see #9) or a Failure.indication (see
  *>     #13).
  *> 
  *>  9. The RESULT.request has been confirmed.
  *> 
  *> 10. Submit the message to the RFC-822 mailer.
  *> 
  *> 11. Attempt, a number of times, to send the submitted message via the
  *>     RFC-822 mailer.  If the send was successful, then return.
  *> 
  *> 12. If, after the maximum number of retries, the message was not able
  *>     to be sent, consider it a failure.  Since the UA assumption has
  *>     been that submission was successful, but now it has not been sent,
  *>     a brand new message, a Non-Delivery message, must be generated and
  *>     delivered to the UA. When this is completed, then return.
  *> 
  *> 13. A FAILURE.indication has occurred due to the previously issued
  *>     RESULT.request.
  *> 
  *> 14. A Submission Verification is issued to the UA to see if the
  *>     RESULT.request was received.  There are three possible results
  *>     from sending the submission verification to the UA: Fail (see
  *>     #15), Send Message (see #16) or Drop Message (see #20).
  *> 
  *> 15. Fail -- The Submission-verify request didn't reach the UA, or the
  *>     Submission Verify response didn't get back.  Ignore the message
  *>     and return.
  *> 
  *> 16. The Submission Verify operation succeeded, meaning that the UA
  *>     received the request, and responded with a message stating that it
  *>     wants the message to be sent.
  *> 
  *> 17. Attempt, a number of times, to send the submitted message via the
  *>     RFC-822 mailer.
  *> 
  *> 18. If the message was submitted to the RFC-822 mailer successfully,
  *>     then return.  If, after the maximum number of retries, the message
  *>     was not able to send the message, consider it a failure.
  *> 
  *> 19. The UA already assumes that the Message-submission was successful.
  *>     Now since the submitted message has not been sent, a brand new
  *>     message, a Non- Delivery message, must be generated and delivered
  *>     to the UA. After this is accomplished, then return.
  *> 
  *> 20. The UA responded with a message stating that the message should be
  *>     dropped.  This may occur if the UA never received the result from
  *>     the MTS, meaning that it never received the Message Id, and had to
  *>     therefore inform the user that the message couldn't be submitted.
  *>     This may also occur if the UA doesn't have the record of the
  *>     message being verified.  It can be because the message record has
  *> 
  *> Banan                     Informational                      [Page 46]
  *> 
  *> 
  *> 
  *> 
  *>     been aged and expired, or because the device has not been able to
  *>     keep the record of the received message because of storage or
  *>     memory limitations.  There is nothing to do, so return.
  *> 
  *> 
  *> 5.1.3  Delivery-control
  *> 
  *> 
  *> This operation can be processed immediately.  After it is processed,
  *> the appropriate result is returned.
  *> 
  *> 
  *> 5.1.4  Delivery-verify
  *> 
  *> 
  *> This operation occurs when the UA doesn't think that the MTS has
  *> received the RESULT.indication from a previously delivered message.
  *> The UA wants to make sure that the MTS knows it has been delivered.
  *> The MTS will determine what it knows of the specified message, and
  *> send back a result.  This can be processed immediately, as it doesn't
  *> need to deal with duplicate detection.
  *> 
  *> 
  *> 5.1.5  MTS Invoker
  *> 
  *> 
  *> The MTS invoker is responsible for processing the following
  *> operations, received from ESROS:
  *> 
  *> 
  *>   o Message-delivery
  *> 
  *>   o Submission-control
  *> 
  *>   o Submission-verify
  *> 
  *> 
  *> Submission-control
  *> 
  *> 
  *> Process the Submission Control request.
  *> 
  *> 
  *> Message-delivery
  *> 
  *> 
  *>  1. Check the User Agent's profile to determine the SAP.
  *> 
  *>  2. Set the SAP to 3-Way.
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 47]
  *> 
  *> 
  *> 
  *> 
  *>  3. Issue the INVOKE.request on the appropriate SAP, with duplication
  *>     detection enabled.  Since a local error is possible on issuing the
  *>     INVOKE.request, a retry counter is needed.
  *> 
  *>  4. There are three possible events possible in result to the
  *>     INVOKE.request:  an ERROR.indication (see #5), a RESULT.indication
  *>     (see #9) or a FAILURE.indication (see #10).
  *> 
  *>  5. An ERROR.indication was received, which means that the UA can't
  *>     accept the message right now.
  *> 
  *>  6. If the reason was one of a transient nature, wait for a while and
  *>     then send the Deliver Request again.
  *> 
  *>  7. If the reason was one of a permanent nature, send back a
  *>     non-delivery report to the originator.
  *> 
  *>  8. Since the error was one of a permanent nature, then the MTS must
  *>     send back a non-delivery report, then log the unsuccessful
  *>     delivery with error from UA and return.
  *> 
  *>  9. A RESULT.Indication was returned, which means that the Delivery
  *>     was successful.  Send a delivery report to the originator if one
  *>     was requested and log successful delivery and return.
  *> 
  *>     If the UA profile indicated that Complete mode was to be used,
  *>     keep track of the fact that this message has been successfully
  *>     delivered (as far as the MTS is concerned), so that if the UA
  *>     sends us a Delivery Verify operation, we know that we consider the
  *>     message to be delivered.
  *> 
  *> 10. A FAILURE.indication was returned, which means there was a problem
  *>     getting the Deliver Request to the UA, or in getting the response
  *>     back from the UA. In any case, a response was never received, so
  *>     the request timed out.  Wait for a while, and then send the
  *>     Deliver Request again.
  *> 
  *>     As long as a FAILURE.indication is returned and the number of
  *>     retries has not been exceeded, keep trying to verify the delivery.
  *> 
  *> 
  *> Submission-verify
  *> 
  *> 
  *> The Submission-verify operation is always issued on the 2-Way SAP. The
  *> response is awaited.  If a response doesn't come, the request is
  *> queued and attempted again later.
  *> 
  *> 
  *>  1. Issue the INVOKE.request on the 2-Way SAP, with duplication
  *>     detection disabled.  Since a local error on issuing the invoke
  *> 
  *> Banan                     Informational                      [Page 48]
  *> 
  *> 
  *> 
  *> 
  *>     request is possible, a retry counter is needed.
  *> 
  *>  2. An INVOKE.Request has been issued and a response has been
  *>     received.  The response will be either a a RESULT.indication (see
  *>     #3) or a FAILURE.indication (see #4).  There are no defined errors
  *>     to a Submission Verify operation, so an ERROR.indication should
  *>     not be occurring here.
  *> 
  *>  3. A RESULT.indication was received.  Either ResponseSendMessage or
  *>     ResponseDropMessage, as specified in the PDU, will be returned.
  *> 
  *>  4. A FAILURE.indication was received, which means that there was a
  *>     problem getting the Submission Verify Request to the UA, or in
  *>     getting the response back from the UA. In any case, the response
  *>     was never received, so the request timed out.  Wait for a while,
  *>     and then another attempt to send the Submission Verify request is
  *>     needed.
  *> 
  *> 
  *> Non-Delivery Report
  *> 
  *> 
  *> Issue an INVOKE.request containing a Submit operation with a content
  *> type of Non- Delivery Report, to the UA. This operation is always
  *> issued on the 2-Way SAP. The response is awaited.  If a response
  *> doesn't come, the request is queued and attempted again later.
  *> 
  *> 
  *>  1. Create a Submit operation.
  *> 
  *>  2. Issue the INVOKE.request on the 2-Way SAP, with duplication
  *>     detection enabled.  Since a local error on issuing the invoke
  *>     request is possible, a retry counter for is needed.
  *> 
  *>  3. A response to the INVOKE.Request has been received.  The response
  *>     will be either a RESULT.indication (see #5), ERROR.indication (see
  *>     #4), or a FAILURE indication (see #7).
  *> 
  *>  4. An ERROR.indication was received, which means that the UA doesn't
  *>     know what to do with our non-delivery report.  That's the UAs
  *>     problem, so just do nothing and return.
  *> 
  *>  5. A RESULT.indication was received, which means we delivered a
  *>     successful non-delivery report.
  *> 
  *>  6. The result is logged.  Nothing more is needed, so return.
  *> 
  *>  7. A FAILURE.indication was received, which means there was a problem
  *>     getting the Submit Request to the UA, or in getting the response
  *>     back from the UA. In any case, the response was never, so the
  *>     request timed out.  Wait for a while, and then send the Submission
  *> 
  *> Banan                     Informational                      [Page 49]
  *> 
  *> 
  *> 
  *> 
  *>     Verify request again.
  *> 
  *> 
  *> 5.2  UA Behavior
  *> 
  *> The User Agent is event-driven.

You already said that.

  *> 
  *> If it received an event from ESROS, then it could be any of the
  *> following types:
  *> 
  *> 
  *>   o Message delivery indication;
  *> 
  *>   o Submission verify indication;
  *> 
  *>   o Result indication for a delivery verify operation;
  *> 
  *>   o Error indication for a delivery verify operation;
  *> 
  *>   o Submission control indication.

Since this section is a symmetrical copy of the MTS section,
my same comments apply.

  *> 
  *> 
  *> For an ESROS event responsibility is passed to the UA performer
  *> (Section 5.2.1).
  *> 
  *> IF the UA received an event indicating that there's a message from the
  *> user, for submission, then responsibility is passed to the UA invoker
  *> (Section 5.2.2).
  *> 
  *> 
  *> 5.2.1  UA Performer
  *> 
  *> 
  *> The performer on the UA side is responsible for processing the
  *> following operations:
  *> 
  *> 
  *>   o Message Delivery
  *> 
  *>   o Submission Verification
  *> 
  *> 
  *> Message-delivery
  *> 
  *> 
  *>  1. A Message-delivery request is received.
  *> 
  *>  2. Check for the correctness of the PDU. If the PDU is bad the see
  *>     #3.  If the PDU is good then see #8.
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 50]
  *> 
  *> 
  *> 
  *> 
  *>  3. Send an ESROS ERROR.request.  If the request arrived on a 3-Way
  *>     SAP, use a 3-Way SAP for the result.  If the request arrived on a
  *>     2-Way SAP, use a 2-Way SAP for the result.  Keep track of the type
  *>     of request that was issued.
  *> 
  *>  4. Wait for the ESROS event.  The result could be an ERROR.confirm
  *>     (see #5) or a FAILURE.indication (see #7).
  *> 
  *>  5. The ESROS event was an ERROR.confirm
  *> 
  *>  6. Log the message as the Non-Delivery was confirmed by the MTS and
  *>     return.
  *> 
  *>  7. If the ESROS event was a FAILURE.indication, that means one of two
  *>     things has occurred:
  *> 
  *> 
  *>     A. The MTS has received nothing (the ERROR.request PDU was lost),
  *>        which means that the MTS doesn't know that the message delivery
  *>        has been rejected.  In this case, the MTS will eventually time
  *>        out, and retransmit the message delivery request.
  *> 
  *>     B. The 3-Way acknowledgment was lost, which means that the MTS has
  *>        in fact received the ERROR.request PDU and knows about the
  *>        delivery failure.
  *> 
  *> 
  *>     Either way, the message can now be ignored.
  *> 
  *>  8. Send an ESROS RESULT.request.  If the request arrived on a 3-Way
  *>     SAP, use a 3-Way SAP for the result.  If the request arrived on a
  *>     2-Way SAP, use a 2-Way SAP for the result.  Keep track of the type
  *>     of request that was issued.
  *> 
  *>  9. Wait for the ESROS event.  The result could be an RESULT.confirm
  *>     (see #10) or a FAILURE.indication (see #13).
  *> 
  *> 10. If the event is a RESULT.confirm, then the delivered message can
  *>     now be given to the user.
  *> 
  *> 11. Deliver the message to the user.
  *> 
  *> 12. Log the message as Message Delivery Known to MTS.
  *> 
  *> 13. If the event is a FAILURE.indication, then, if the delivery was on
  *>     a 3-Way SAP, a Delivery Verification request to the MTS can be
  *>     issued to see if the MTS actually got the RSULT.request.  If the
  *>     delivery was on a 2-Way SAP, then the message will delivered to
  *>     the user and if the MTS has not received the RESULT.request, it
  *>     will retransmit it later and the duplicate will be ignored.
  *> 
  *> 
  *> Banan                     Informational                      [Page 51]
  *> 
  *> 
  *> 
  *> 
  *> 14. Deliver the message to the user.  Since a FAILRUE.indication was
  *>     received in response to a RESULT.requst, it means that possible,
  *>     the MTS didn't receive the RESULT.request.  The MTS could now time
  *>     out, and send another copy of the same message.  Save the message
  *>     for duplication detection.
  *> 
  *> 15. Log the fact that the message was delivered, but that the MTS
  *>     might not be aware of it.
  *> 
  *> 16. If the UA supports Delivery Verification, and the Delivery Request
  *>     was sent on the 3-Way SAP, then see #17.  If either of these
  *>     conditions are not true, then return.
  *> 
  *> 17. Send a Delivery-verify request to see if the MTS got the
  *>     RESULT.request.
  *> 
  *>     There are three possible results from sending the delivery
  *>     verification to the MTS: Fail (see #18), ResponseNonDelivery (see
  *>     #20) or ResponseDelivery (see #23).
  *> 
  *> 18. Fail -- Delivery Verify request didn't reach the MTS, or the
  *>     Delivery Verify response didn't get back to the UA.
  *> 
  *> 19. Log this as delivering the message to the user, but the MTS having
  *>     possibly sent a Non-Delivery report to the originator even though
  *>     the UA did actually deliver the message to the user.  Then return.
  *> 
  *> 20. ResponseNonDelivery -- Verify Response indicates that the MTS now
  *>     knows (because of the Delivery Verify operation that the message
  *>     has been delivered to the user, but had not received our
  *>     RESULT.request nor a Delivery Verify operation in a timely manner,
  *>     and had already sent out a Non-Delivery report to the originator.
  *> 
  *> 21. The MTS had not received, from the UA, in a timely manner, a
  *>     RESULT.indication indicating that the message had been delivered
  *>     to the user.  The MTS has already sent a Non-Delivery report to
  *>     the originator.  The UA must let the user know about this.  Log
  *>     the message as delivered to the user, but a Non-Delivery sent to
  *>     the originator.
  *> 
  *> 22. Since the UA received a response to the Verify operation, it knows
  *>     that the MTS knows about this message delivery, so the UA also
  *>     knows that it won't be receiving a duplicate of it.  The UA can
  *>     now remove this message's Message Id from the list of possible
  *>     duplicates.
  *> 
  *> 23. ResponseDelivery -- Verify Response received from MTS.
  *> 
  *> 24. This means that the MTS knows (either because the MTS had received
  *>     the RESULT.request that was sent by the UA or because the MTS has
  *>     now received the UAs Delivery-verification message, informing that
  *> 
  *> Banan                     Informational                      [Page 52]
  *> 
  *> 
  *> 
  *> 
  *>     the UA received the message for delivery to the user.  The MTS is
  *>     (or was) able to send a Delivery report to the originator if one
  *>     was requested.  Log it as such.
  *> 
  *> 25. Since the UA received a response to the Verify operation, it knows
  *>     that the MTS knows about this message delivery, so the UA also
  *>     knows that it won't be receiving a duplicate of it.  The UA can
  *>     now remove this message's Message Id from the list of possible
  *>     duplicates and return.
  *> 
  *> 
  *> Submission-verify
  *> 
  *> 
  *> Process the Submission-verify request and return.
  *> 
  *> 
  *> 5.2.2  UA Invoker
  *> 
  *> 
  *> The invoker on the UA side is responsible for processing the following
  *> operations:
  *> 
  *> 
  *>   o Message-submission
  *> 
  *>   o Delivery-control
  *> 

??? WHERE is the definition of Message-submission?

How about Delivery-Verify?

  *> 
  *> Delivery-control
  *> 
  *> 
  *>  1. Issue the INVOKE.request on the 3-Way SAP, with duplication
  *>     detection enabled.  Since the UA can get a local error on issuing
  *>     the invoke request, a retry counter is needed.
  *> 
  *>     If we got a local failure in issuing the Invoke Request, wait a
  *>     while and then try again (up to the limit of the maximum number of
  *>     retries).
  *> 
  *>  2. The UA has issued an INVOKE.Request.  Wait for a response from
  *>     ESROS. The response will be either a RESULT.indication (see #5),
  *>     ERROR.indication (see #3), or FAILURE.indication (see #7).
  *> 
  *>  3. A ERROR.indicaiton was received, meaning that the MTS told says
  *>     that it cannot accept the message.
  *> 
  *>  4. Log the MTS rejection and return
  *> 
  *>  5. A RESULT.indication was received, which means that the Submission
  *>     was successful.
  *> 
  *> Banan                     Informational                      [Page 53]
  *> 
  *> 
  *> 
  *> 
  *>  6. Log successful submission and return.
  *> 
  *>  7. a FAILURE.indication was received, meaning that there was a
  *>     problem getting the Submit Request to the MTS, or in getting the
  *>     response back from the MTS. In any case, the UA never received the
  *>     response, so the request timed out.  Wait for a while, and then
  *>     send the Submit Request again.
  *> 
  *>  8. The UA has exceeded the maximum number of retries.  Let the user
  *>     know, log the failure and return.
  *> 
  *> 
  *> 6  EMSD FORMAT STANDARDS
  *> 
  *> 6.1  Format Standard Overview
  *> 
  *> EMSD Format Standard (EMSD-FS) is a non-textual form of compact
  *> encoding of Internet mail (RFC-822) messages which facilitates
  *> efficient transfer of messages.  EMSD-FS does not replace RFC-822 in
  *> any way.  EMSD-FS defines a method of representation of short
  *> interpersonal message.  It defines the ``Content'' encoding (Header +
  *> Body).  Although EMSD-FS contains end-to-end information its scope is
  *> purely point-to-point.
  *> 
  *> The "Efficient InterPersonal Message Format Standard" is defined in
  *> this section.  This standard is primarily intended for communication
  *> among people.
  *> 
  *> The EMSD Format Standard is designed to be fully consistent with
  *> RFC-822 [3].  In many ways EMSD-FS can be considered to be an
  *> efficiency oriented encoder and decoder.  Through use of EMSD-FS an

A protocol is not an encoder/decoder.  A program has that role.

  *> RFC-822 message is converted to a more compact binary encoding.  This
  *> more compact message is then transfered between an EMSD-SA and
  *> EMSD-UA. The compact message (represented in EMSD-FS) may then be
  *> converted back to RFC-822 intact.
  *> 
  *> For messages that are originated (submitted) with EMSD protocol,
  *> certain fields (e.g., addresses, message-id) can have special forms
  *> that are specialized and produce more compact EMSD-FS encoding.  These
  *> special forms are legitimate values of RFC-822 messages.
  *> 
  *> This specification expresses information objects using ASN.1 [X.208].
  *> Encoding of ASN.1 shall be based on Basic Encoding Rules (BER) [5].
  *> Future revisions of this specification will use Packed Encoding Rules
  *> (PER) [4].
  *> 
  *> The convention of (O) "OPTIONAL", (D) "DEFAULT", (C) "CONDITIONAL" and
  *> (M) "MANDATORY" which express requirements for presence of information
  *> is used in this section.
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 54]
  *> 
  *> 
  *> 
  *> 
  *> 6.2  Interpersonal Messages
  *> 
  *> An interpersonal message (IPM) consists of a heading and a body.
  *> 
  *> 
  *> IPM ::=   SEQUENCE
  *> 
  *> {
  *> 
  *>   heading       Heading,
  *> 
  *>   body          Body OPTIONAL
  *> 
  *> };
  *> 
  *> 
  *> 6.2.1  Heading fields
  *> 
  *> 
  *> The fields that may appear in the Heading of an IPM are defined and
  *> described below.
  *> 
  *> 
  *> 
  *> Heading ::= SEQUENCE
  *> {
  *>   -- Address of the sending agent (person, program, machine) of
  *>   -- this message. This field is mandatory if the sender
  *>   -- is different than the originator.
  *>   sender                      [0]     EMSDORAddress OPTIONAL,
  *> 
  *>   -- Address of the originator of the message
  *>   -- (not necessarily the sender)
  *>   originator                          EMSDORAddress,
  *> 
  *>   -- List of recipients and flags associated with each.
  *>   recipient-data                      SEQUENCE SIZE (1..ub-recipients)
  *>                                       OF PerRecipientFields,
  *> 
  *>   -- Flags applying to this entire message
  *>   per-message-flags           [1]     IMPLICIT BIT STRING
  *> 
  *>    {
  *>    -- Priority values
  *>    -- At most one of "non-urgent" and "urgent" may be specified
  *>    -- concurrently.  If neither is specified, then a Priority
  *>    -- level of "normal" is assumed.
  *>    priority-non-urgent             (0),
  *>    priority-urgent                 (1),
  *> 
  *>    -- Importance values
  *> 
  *> Banan                     Informational                      [Page 55]
  *> 
  *> 
  *> 
  *> 
  *>    -- At most one of "low" and "high" may be specified
  *>    -- concurrently.  If neither is specified, then an
  *>    -- Importance level of "normal" is  assumed.
  *>    importance-low                  (2),
  *>    importance-high                 (3),
  *> 
  *>    -- Indication of whether this message has been
  *>       automatically forwarded
  *>    auto-forwarded                  (4)
  *>    } OPTIONAL,
  *> 
  *>   -- User-specified recipient who is to receive replies
  *>      to this message.
  *>   reply-to                    [2]     IMPLICIT SEQUENCE SIZE
  *>                                       (1..ub-reply-to)
  *>                                      OF EMSDORAddress OPTIONAL,
  *> 
  *>   -- Identifier of a previous message, for which this message
  *>   -- is a reply
  *>   replied-to-IPM                       EMSDMessageId OPTIONAL,
  *> 
  *>   -- Subject of the message.
  *>   subject                     [3]     IMPLICIT AsciiPrintableString
  *>                                       (SIZE (0..ub-subject-field))
  *>                                                 OPTIONAL,
  *> 
  *>   -- RFC-822 header fields not explicitly provided for in
  *>   -- this Heading. For messages incoming from the external
  *>   -- world (i.e. in RFC-822 format), the Message-Id: field
  *>   -- need not go here, as it is placed in the
  *>   -- Envelope's EMSDMessageId (message-id) field.
  *>   extensions        [4]  IMPLICIT  SEQUENCE
  *>                          (SIZE (0..ub-header-extensions))
  *>                          OF  IPMSExtension OPTIONAL,
  *> 
  *>   -- MIME Version (if other than 1.0)
  *>   mime-version            [5]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..ub-mime-version-length))
  *>                                                OPTIONAL,
  *> 
  *>   -- Top-level MIME Content Type
  *>   mime-content-type       [6]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..
  *>                                    ub-mime-content-type-length))
  *>                                             OPTIONAL,
  *> 
  *>   -- MIME Content Id
  *>   mime-content-id         [7]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..
  *>                                    ub-mime-content-id-length))
  *>                                             OPTIONAL,
  *> 
  *> Banan                     Informational                      [Page 56]
  *> 
  *> 
  *> 
  *> 
  *> 
  *>   -- MIME Content Description
  *>   mime-content-description [8]    IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..ub-mime-content-
  *>                                   description-length))
  *>                                             OPTIONAL,
  *>   -- Top-level MIME Content Type
  *>   mime-content-transfer-encoding
  *>                            [9]     IMPLICIT AsciiPrintableString
  *>                                    (SIZE (0..ub-mime-content-
  *>                                    transfer-encoding))
  *>                                             OPTIONAL
  *> };
  *> 
  *> 
  *> Some fields have components and thus are composite, rather than
  *> indivisible.  A field component is called a sub-field.
  *> 
  *> 
  *> Sender
  *> 
  *> 
  *> This field is mandatory if the sender is different from the
  *> originator.
  *> 
  *> 
  *> Originator
  *> 
  *> 
  *> The Originator heading field (O) identifies the IPM's originator.
  *> 
  *> 
  *> Recipient-data
  *> 
  *> 
  *> PerRecipientFields ::= SEQUENCE
  *> {
  *>   recipient-address                            EMSDORAddress,
  *>   per-recipient-flags                          BIT STRING
  *> 
  *>   {
  *>   -- Recipient Types.
  *>   -- At most one of "copy" and "blind-copy" may be
  *>   -- specified concurrently for a single recipient.  If
  *>   -- neither is specified, than the recipient
  *>   -- is assumed to be a "primary" recipient.
  *>   recipient-type-copy                             (0),
  *>   recipient-type-blind-copy                       (1),
  *> 
  *>   -- Notification Request Types.
  *>   -- Only one of "rn" and "nrn" may be specified
  *> 
  *> Banan                     Informational                      [Page 57]
  *> 
  *> 
  *> 
  *> 
  *>   -- concurrently, \\x110011 for a single recipient.
  *>   -- "rn" implies "nrn" in addition.
  *>   notification-request-rn                         (2),
  *>   notification-request-nrn                        (3),
  *> 
  *>   notification-request-ipm-return                 (4),
  *> 
  *>   -- Report Request Types
  *>   -- At most one of these should be set for a
  *>   -- particular recipient. "delivery" implies "non-delivery"
  *>   -- in addition.
  *>   report-request-non-delivery                     (5),
  *>   report-request-delivery                         (6),
  *> 
  *>   -- Originator-to-Recipient request for a reply.
  *>   reply-requested                                 (7)
  *>   } DEFAULT { report-request-non-delivery }
  *> 
  *> };
  *> 
  *> 
  *> recipient-address
  *> 
  *> 
  *> The Primary Recipients heading field identifies the zero or more users
  *> who are the "primary recipients" of the IPM. The primary recipients
  *> might be those users who are expected to act upon the IPM.
  *> 
  *> 
  *> per-recipient-flags
  *> 
  *> 
  *> The Copy Recipients heading field identifies the zero or more users
  *> who are the "copy recipients" of the IPM. The copy recipients might be
  *> those users to whom the IPM is conveyed for information.
  *> 
  *> 
  *> recipient-type-copy
  *> 
  *> 
  *> This field is set if the recipient is on the Carbon Copy (CC) list.
  *> 
  *> 
  *> recipient-type-blind-copy
  *> 
  *> 
  *> This field is set if the recipient is on the Blind Carbon Copy (BCC)
  *> list.
  *> 
  *> The Blind Copy Recipients heading field (C) identifies zero or more
  *> users who are the intended blind copy recipients of the IPM.
  *> 
  *> Banan                     Informational                      [Page 58]
  *> 
  *> 
  *> 
  *> 
  *> The phrase "copy recipients" above has the same meaning as in "Copy
  *> Recipients" from Section 6.2.1 .  A blind copy recipient is one whose
  *> role as such is disclosed to neither primary nor copy recipients.
  *> 
  *> In the instance of an IPM intended for a blind copy recipient, this
  *> conditional field shall be present and identify that user.  Whether it
  *> shall also identify the other blind copy recipients is a local matter.
  *> In the instance of the IPM intended for a primary or copy recipient,
  *> the field shall be absent.
  *> 
  *> 
  *> notification-request-rn
  *> 
  *> 
  *> A receipt notification (rn) reports its originator's receipt, or his
  *> expected and arranged future receipt, of an IPM.
  *> 
  *> 
  *> notification-request-nrn
  *> 
  *> 
  *> A non-receipt notification (nrn) reports its originator's failure to
  *> receive, to accept, or his delay in receiving, an IPM.
  *> 
  *> 
  *> notification-request-ipm-return
  *> 
  *> 
  *> When this field is set, the contents of the message are returned along
  *> with the notification.
  *> 
  *> 
  *> report-request-non-delivery
  *> 
  *> 
  *> The report request enables the MTS to acknowledge to the MTS-user one
  *> or more outcomes of a previous invocation of the message-submission or
  *> probe-submission abstract-operations.
  *> 
  *> A report is returned only in case of non-delivery.
  *> 
  *> 
  *> report-request-delivery
  *> 
  *> 
  *> For the message-submission, report-delivery indicates the delivery or
  *> non-delivery of the submitted message to one or more recipients.  For
  *> the probe-submission, the report- delivery indicates whether or not a
  *> message could be delivered if the message were to be submitted.
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 59]
  *> 
  *> 
  *> 
  *> 
  *> reply-requested
  *> 
  *> When set this field indicates that the originator requests that a
  *> recipient send a message in reply to the message which carries the
  *> request.
  *> 
  *> 
  *> 
  *> per-message-Flags
  *> 
  *> Priority
  *> 
  *> 
  *> The Priority field (default is normal) identifies the priority that
  *> the authorizing users attach to the IPM. It may assume any one of the
  *> following values:  urgent, normal, or non-urgent.
  *> 
  *> At most one of either "non-urgent" or "urgent" may be specified
  *> concurrently.  If neither is specified, then a Priority level of
  *> "normal" is assumed.
  *> 
  *> 
  *> Importance
  *> 
  *> 
  *> The Importance heading field (default normal) identifies the
  *> importance that the authorizing users attach to the IPM. It may assume
  *> any one of the following values:  low, normal, or high.
  *> 
  *> At most one of either "low" or "high" may be specified concurrently.
  *> If neither is specified, then a Importance level of "normal" is
  *> assumed.
  *> 
  *> The values above are not defined by this specification; they are given
  *> meaning by users.
  *> 
  *> 
  *> auto-forwarded
  *> 
  *> 
  *> The Auto-forwarded heading field (default is false) indicates whether
  *> the IPM is the result of auto-forwarding.  It is a Boolean value.
  *> 
  *> 
  *> reply-to
  *> 
  *> 
  *> User-specified recipient or recipients who are to receive replies to
  *> this message.
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 60]
  *> 
  *> 
  *> 
  *> 
  *> replied-to IPM
  *> 
  *> The Replied-to IPM heading field (C) identifies the IPM to which the
  *> present IPM is a reply.  It comprises an IPM identifier.
  *> 
  *> This conditional field shall be present if, and only if, the IPM is a
  *> reply.
  *> 
  *> Note - In the context of forwarding, care should be taken to
  *> distinguish between the forwarding IPM and the forwarded IPM. This
  *> field should identify whichever of these two IPMs to which the reply
  *> responds.
  *> 
  *> 
  *> 
  *> subject
  *> 
  *> The Subject heading field (O) identifies the subject of the IPM. It
  *> corresponds to the "Subject:" field of RFC-822.
  *> 
  *> 
  *> 
  *> extensions
  *> 
  *> The Extensions heading field [D no extensions (i.e.  members)] conveys
  *> information accommodated by no other heading field.  It comprises a
  *> Set of zero or more IPMS extensions, each conveying one such
  *> information item.
  *> 
  *> 
  *> IPMSExtension ::= SEQUENCE
  *> {
  *>     x-header-label                      AsciiPrintableString,
  *>     x-header-value                      AsciiPrintableString
  *> };
  *> 
  *> 
  *> 
  *> 6.2.2  Body part types
  *> 
  *> The types of body parts that may appear in the Body of an IPM are
  *> structured using the MIME specification.
  *> 
  *> 
  *> 
  *> Body ::= SEQUENCE
  *> {
  *>   compression-method          [0]     IMPLICIT CompressionMethod
  *>                                                OPTIONAL,
  *>   -- If compression method is not specified,
  *> 
  *> 
  *> Banan                     Informational                      [Page 61]
  *> 
  *> 
  *> 
  *> 
  *>   -- "no-compression" is implied.
  *> 
  *>   message-body                        OCTET STRING
  *>   -- See MIME for structure of the Body.
  *>   -- If a compression method is specified, the entire text containing
  *>   -- the Content-Type: element followed by the RFC-822 body are
  *>   -- compressed using the specified method, and placed herein.
  *> };
  *> 
  *> CompressionMethod ::= INTEGER
  *> {
  *>   -- Compression Methods numbered 0 to 63 are reserved for
  *>   -- assignment within this and associated specifications.
  *>   no-compression                  (0),
  *>   lempel-ziv                      (1)
  *> 
  *>   -- Compression Methods numbered between 64 and 127 may be
  *>   --  used on a bilaterally-agreed basis between peers.
  *> } (0..127)
  *> 
  *> 
  *> 
  *> 7  SECURITY CONSIDERATIONS
  *> 
  *> This protocol supports simple authentication of the originator's
  *> address by the EMSD-SA and simple authentication of EMSD-SA by
  *> EMSD-UA.
  *> 
  *> Mainstream Internet mail security mechanisms can be used in
  *> conjunction with the EMSD protocol.
  *> 
  *> 
  *> 8  AUTHOR'S ADDRESS
  *> 
  *> Mohsen Banan
  *> Neda Communications, Inc.
  *> 17005 SE 31st Place
  *> Bellevue, WA 98008
  *> email: mohsen@neda.com
  *> 
  *> 
  *> A  EMSD-P ASN.1 MODULE
  *> 
  *> This section compiles in one place the complete ASN.1 Module for EM
  *> Submission and Delivery Protocol.
  *> 
  *> 
  *> 
  *> EMSD-SubmissionAndDeliveryProtocol DEFINITIONS ::=
  *> 
  *> BEGIN
  *> 
  *> Banan                     Informational                      [Page 62]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> EXPORTS EMSDORAddress, AsciiPrintableString, ContentType,
  *> DateTime, EMSDMessageId, EMSDORAddress, ProtocolVersionNumber;
  *> 
  *> -- Upper bounds
  *> 
  *> ub-recipients  INTEGER ::= 256;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-reply-to INTEGER ::= 256;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-subject-field INTEGER ::= 128;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-password-length INTEGER ::= 16;
  *> ub-content-length INTEGER ::= 65535;
  *> -- also defined in EMSD-Probe
  *> ub-content-types INTEGER ::= 128;
  *> ub-message-id-length INTEGER ::= 127;
  *> ub-total-number-of-segments INTEGER ::= 32;
  *> ub-header-extensions INTEGER ::= 64;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-emsd-name-length INTEGER ::= 64;
  *> ub-emsd-address-length INTEGER ::= 20;
  *> ub-rfc822-name-length INTEGER ::= 127;
  *> ub-mime-version-length INTEGER ::= 8;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-mime-content-type-length INTEGER ::= 127;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-mime-content-id-length INTEGER ::= 127;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-mime-content-description-length INTEGER ::= 127;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-mime-content-transfer-encoding INTEGER ::= 127;
  *> -- also defined in EMSD-InterpersonalMessaging1995
  *> ub-local-message-nu INTEGER ::= 4096;
  *> 
  *> ----------------------
  *> -- SUBMIT Operation --
  *> ----------------------
  *> 
  *> submit ES-OPERATION
  *> 
  *>     ARGUMENT SubmitArgument
  *>     RESULT SubmitResult
  *>     ERRORS
  *>     {
  *>         submissionControlViolated,
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation,
  *>         messageError
  *>     } ::= 33;
  *> 
  *> Banan                     Informational                      [Page 63]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> SubmitArgument ::= SEQUENCE
  *> {
  *>   -- Security features
  *>   security           [0]    IMPLICIT SecurityElement
  *>                             OPTIONAL,
  *> 
  *>   -- Segmentation features for efficient transport
  *>   segment-info                  SegmentInfo OPTIONAL,
  *> 
  *>   -- Content type of the message
  *>   content-type                            ContentType,
  *> 
  *>   --
  *>   -- THE CONTENT --
  *>   --
  *> 
  *>   -- The submission content
  *>   content                       ANY DEFINED BY content-type
  *> 
  *> };
  *> 
  *> SubmitResult ::= SEQUENCE
  *> 
  *> {
  *> 
  *>   -- Permanent identifier for this message.
  *>   -- Also contains the message submission time.
  *>   -- See comment regarding assignment of message
  *>   -- identifiers, at the definition of EMSDLocalMessageId.
  *>   message-id                        EMSDLocalMessageId
  *>     };
  *> 
  *> --------------------------------
  *> -- Delivery Control Operation --
  *> --------------------------------
  *> 
  *> deliveryControl ES-OPERATION
  *>     ARGUMENT DeliveryControlArgument
  *>     RESULT DeliveryControlResult
  *>     ERRORS
  *>     {
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 2;
  *> 
  *> DeliveryControlArgument ::= SEQUENCE
  *> {
  *>   -- Request an addition of or removal of a set of restrictions
  *>   restrict             [0]     IMPLICIT Restrict DEFAULT update,
  *> 
  *> Banan                     Informational                      [Page 64]
  *> 
  *> 
  *> 
  *> 
  *> 
  *>   -- Which operations are to be placed in the restriction set
  *>   permissible-operations  [1]     IMPLICIT Operations OPTIONAL,
  *> 
  *>   -- What maximum content length should be allowed
  *>   permissible-max-content-length
  *>                           [2]     IMPLICIT INTEGER
  *>                                   (0..ub-content-length) OPTIONAL,
  *> 
  *>   -- What is the lowest priority message which may be delivered
  *>   permissible-lowest-priority
  *>                           [3]     IMPLICIT ENUMERATED
  *>                                   {
  *>                                      non-urgent     (0),
  *>                                      normal         (1),
  *>                                      urgent         (2)
  *>                                   } OPTIONAL,
  *> 
  *>   -- Security features
  *>   security                  [4]     IMPLICIT SecurityElement
  *>                                                   OPTIONAL,
  *> 
  *>   -- User Feature selection
  *>   user-features             [5]     IMPLICIT OCTET STRING OPTIONAL
  *> };
  *> 
  *> DeliveryControlResult ::= SEQUENCE
  *> {
  *>   -- Operation types queued at the EMSD-SA due to existing
  *>   -- restrictions.
  *>   waiting-operations    [0]   IMPLICIT Operations DEFAULT { },
  *> 
  *> 
  *>   -- Types of messages queued at the EMSD-SA due to
  *>   -- existing restrictions
  *>   waiting-messages      [1]   IMPLICIT WaitingMessages DEFAULT { },
  *> 
  *>   -- Content Types of messages queued at the EMSD-SA
  *>   waiting-content-types   SEQUENCE SIZE (0..ub-content-types) OF
  *>                                         ContentType DEFAULT { }
  *> };
  *> 
  *> Restrict ::= ENUMERATED
  *> {
  *>     update                                      (1),
  *>     remove                                      (2)
  *> };
  *> 
  *> Operations ::= BIT STRING
  *> {
  *>     submission                                  (0),
  *> 
  *> Banan                     Informational                      [Page 65]
  *> 
  *> 
  *> 
  *> 
  *>     delivery                                    (1)
  *> };
  *> 
  *> 
  *> WaitingMessages ::= BIT STRING
  *> {
  *>     long-content                                (0),
  *>     low-priority                                (1)
  *> };
  *> 
  *> -- Delivery Verify Operation
  *> 
  *> deliveryVerify ES-OPERATION
  *> 
  *>     ARGUMENT DeliveryVerifyArgument
  *>     RESULT DeliveryVerifyResult
  *>     ERRORS
  *>     {
  *>         verifyError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 5;
  *> 
  *> DeliveryVerifyArgument ::= SEQUENCE
  *> {
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   message-id                                      EMSDMessageId
  *> };
  *> 
  *> DeliveryVerifyResult ::= SEQUENCE
  *> {
  *>                          status  DeliveryStatus
  *> };
  *> 
  *>  DeliveryStatus  ::= ENUMERATED
  *> {
  *>         no-report-is-sent-out                   (1),
  *>         delivery-report-is-sent-out             (2),
  *>         non-delivery-report-is-sent-out         (3)
  *> };
  *> 
  *> -----------------------
  *> -- DELIVER Operation --
  *> -----------------------
  *> 
  *> deliver ES-OPERATION
  *>     ARGUMENT DeliverArgument
  *>     RESULT NULL
  *> 
  *> Banan                     Informational                      [Page 66]
  *> 
  *> 
  *> 
  *> 
  *>     ERRORS
  *>     {
  *>         deliveryControlViolated,
  *>         securityError,
  *>         resourceError,
  *>         protocolViolation,
  *>         messageError
  *>     } ::= 35;
  *> 
  *> DeliverArgument ::= SEQUENCE
  *> {
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   message-id                                      EMSDMessageId,
  *> 
  *>   -- Time the message was delivered to the recipient by EMSD-SA
  *>   message-delivery-time                           DateTime,
  *> 
  *>   -- Time EMSD-SA originally took responsibility for processing
  *>   -- of this message. This field shall be omitted if the message-id
  *>   -- contains an EMSDLocalMessageId, because that field contains
  *>   -- the submission time within it.
  *>   message-submission-time [0]     IMPLICIT   DateTime OPTIONAL,
  *> 
  *>   -- Security features
  *>   security                [1]     IMPLICIT   SecurityElement OPTIONAL,
  *> 
  *>   -- SegContentTypementation features for efficient transport
  *>   segment-info                               SegmentInfo OPTIONAL,
  *> 
  *>   -- The type of the content
  *>   content-type                               ContentType,
  *> 
  *>   --
  *>   -- THE CONTENT --
  *>   --
  *> 
  *>   -- The submitted (and now being delivered) content
  *>   content                       ANY DEFINED BY content-type
  *> };
  *> 
  *> -- Submission Control Operation
  *> 
  *> submissionControl ES-OPERATION
  *>     ARGUMENT SubmissionControlArgument
  *>     RESULT SubmissionControlResult
  *>     ERRORS
  *>     {
  *>         securityError,
  *> 
  *> Banan                     Informational                      [Page 67]
  *> 
  *> 
  *> 
  *> 
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 4;
  *> 
  *> SubmissionControlArgument ::= SEQUENCE
  *> {
  *>   -- Request an addition of or removal of a set of restrictions
  *>   restrict               [0]     IMPLICIT Restrict DEFAULT update,
  *> 
  *>   -- Which operations are to be placed in the restriction set
  *>   permissible-operations  [1]     IMPLICIT Operations OPTIONAL,
  *> 
  *>   -- What maximum content length should be allowed
  *>   permissible-max-content-length
  *>                           [2]     IMPLICIT INTEGER
  *>                                   (0..ub-content-length) OPTIONAL,
  *> 
  *>   -- Security features
  *>   security                [3]     IMPLICIT SecurityElement
  *>                                                   OPTIONAL
  *> };
  *> 
  *> SubmissionControlResult ::= SEQUENCE
  *> {
  *>   -- Operation types queued at the EMSD-SA due to existing
  *>   -- restrictions.
  *>   waiting-operations    [0]   IMPLICIT Operations DEFAULT { }
  *> 
  *> };
  *> 
  *> ----------------------------------
  *> -- Submission Verify Operation --
  *> ----------------------------------
  *> 
  *> submissionVerify  ES-OPERATION
  *> 
  *>     ARGUMENT SubmissionVerifyArgument
  *>     RESULT SubmissionVerifyResult
  *>     ERRORS
  *>     {
  *>         submissionVerifyError,
  *>         resourceError,
  *>         protocolViolation
  *>     } ::= 6;
  *> 
  *> SubmissionVerifyArgument ::= SEQUENCE
  *>   -- Identifier of this message. This is the same identifier that
  *>   -- was provided to the originator in the Submission Result.
  *>   -- See comment regarding assignment of message identifiers,
  *>   -- at the definition of EMSDMessageId.
  *>   {
  *> 
  *> Banan                     Informational                      [Page 68]
  *> 
  *> 
  *> 
  *> 
  *>      message-id                       EMSDMessageId
  *>   };
  *> 
  *> SubmissionVerifyResult ::= SEQUENCE
  *>     {
  *>         status  SubmissionStatus
  *>     };
  *> 
  *> SubmissionStatus::= ENUMERATED
  *> {
  *>         send-message            (1),
  *>         drop-message            (2)
  *> };
  *> 
  *> -- GetConfiguration Operation
  *> -- To be fully defined later. This will possibly include,
  *> -- but not be limited to:
  *> --      get-local-time-zone
  *> --      get-protocol-version
  *> --      etc.
  *> 
  *> getConfiguration ES-OPERATION
  *> 
  *>         ARGUMENT NULL
  *>         RESULT NULL
  *>         ERRORS
  *>         {
  *>             resourceError,
  *>             protocolViolation
  *>         } ::= 7;
  *> 
  *> -- SetConfiguration Operation
  *> -- To be fully defined later.
  *> 
  *> setConfiguration ES-OPERATION
  *> 
  *>         ARGUMENT NULL
  *>         RESULT NULL
  *>         ERRORS
  *>         {
  *>             resourceError,
  *>             protocolViolation
  *>         } ::= 8;
  *> 
  *> -- Security --
  *> 
  *> SecurityElement ::= SEQUENCE
  *> 
  *> {
  *>   credentials                   Credentials,
  *>   contentIntegrityCheck         ContentIntegrityCheck OPTIONAL
  *> 
  *> Banan                     Informational                      [Page 69]
  *> 
  *> 
  *> 
  *> 
  *> };
  *> 
  *> Credentials ::= CHOICE
  *> {
  *>   simple                          [0]   IMPLICIT SimpleCredentials
  *>   -- Strong Credentials are for future study
  *>   -- strong                       [1]   IMPLICIT StrongCredentials
  *>   -- externalProcedure            [2]   EXTERNAL
  *> };
  *> 
  *> SimpleCredentials ::= SEQUENCE
  *> 
  *> {
  *>   eMSDAddress                         EMSDAddress OPTIONAL,
  *>   password                    [0]     IMPLICIT OCTET STRING
  *>                               (SIZE (0..ub-password-length)) OPTIONAL
  *> };
  *> 
  *> -- StrongCredentials ::= NULL
  *> -- for now.
  *> 
  *> -- ContentIntegrityCheck is a 16-bit checksum of content
  *> ContentIntegrityCheck ::= INTEGER (0..65535);
  *> 
  *> SegmentInfo ::= CHOICE
  *> 
  *> {
  *>   first           [APPLICATION 2]         IMPLICIT FirstSegment,
  *>   other           [APPLICATION 3]         IMPLICIT OtherSegment
  *> };
  *> 
  *> FirstSegment ::= SEQUENCE
  *> 
  *> {
  *>   sequence-id                             INTEGER,
  *>   number-of-segments                      INTEGER
  *>   -- number-of-segments must not exceed ub-total-number-of-segments
  *> 
  *> };
  *> 
  *> OtherSegment ::= SEQUENCE
  *> {
  *>   sequence-id                             INTEGER,
  *>   segment-number                          INTEGER
  *> };
  *> 
  *> -----------
  *> -- Errors --
  *> ------------
  *> 
  *> protocolVersionNotRecognized  ERROR PARAMETER NULL ::= 1;
  *> 
  *> Banan                     Informational                      [Page 70]
  *> 
  *> 
  *> 
  *> 
  *> 
  *> submissionControlViolated  ERROR PARAMETER NULL ::= 2;
  *> 
  *> messageIdentifierInvalid  ERROR PARAMETER NULL ::= 3;
  *> 
  *> securityError ERROR PARAMETER security-problem SecurityProblem ::= 4;
  *> 
  *> deliveryControlViolated   ERROR PARAMETER NULL ::= 5;
  *> 
  *> resourceError  ERROR PARAMETER NULL ::= 6;
  *> 
  *> protocolViolation  ERROR PARAMETER NULL ::= 7;
  *> 
  *> messageError  ERROR PARAMETER NULL ::= 8;
  *> 
  *> SecurityProblem ::= INTEGER (0..127);
  *> 
  *> 
  *> --
  *> -- EXPORTED Definitions (for use by associated specifications) --
  *> --
  *> 
  *> ContentType ::=  INTEGER
  *> {
  *>   -- Content type 0 is reserved and shall never be transmitted.
  *>   reserved                                        (0),
  *> 
  *>   -- Content types between 1 and 31 (inclusive) are for
  *>   -- internal-use only
  *>   probe                                           (1),
  *>   delivery-report                                 (2),
  *> 
  *>   -- Content types between 32 and 63 (inclusive) are for
  *>   -- message types  defined within this and associated standards.
  *>   emsd-interpersonal-messaging-1995               (32),
  *>   voice-messaging                                 (33)
  *> 
  *>   -- Content types beyond and including 64 are for
  *>   -- bilaterally-agreed use between peers.
  *> }  (0..127);
  *> 
  *> -- If this message was originated as an RFC-822 message, then this
  *> -- EMSDMessageId shall be the "Message-Id:" field from that message.
  *> -- If this message was originated within the EMSD domain,
  *> -- then this identifier shall be unique for the Message Center
  *> -- generating this id.
  *> 
  *> EMSDMessageId ::= CHOICE
  *> {
  *>   emsdLocalMessageId     [APPLICATION 4]  IMPLICIT
  *>                          EMSDLocalMessageId,
  *> 
  *> Banan                     Informational                      [Page 71]
  *> 
  *> 
  *> 
  *> 
  *>   rfc822MessageId        [APPLICATION 5]  IMPLICIT
  *>                          AsciiPrintableString
  *>                          (SIZE (0..ub-message-id-length))
  *> 
  *> };
  *> 
  *> EMSDLocalMessageId ::= SEQUENCE
  *> {
  *>   submissionTime                  DateTime,
  *>   messageNumber                   INTEGER (0..ub-local-message-nu)
  *> };
  *> 
  *> -- An Originator/Recipient Address in EMSD Environment
  *> 
  *> EMSDORAddress ::= CHOICE
  *> {
  *>   -- This is the local-format address
  *>   emsd-local-address-format            EMSDAddress,
  *> 
  *> 
  *>   -- This is a globally-unique RFC-822 Address
  *>   rfc822DomainAddress                 AsciiPrintableString
  *> };
  *> 
  *> 
  *> 
  *> EMSDAddress ::= SEQUENCE
  *> {
  *>   emsd-address         OCTET STRING
  *>                                  (SIZE (1..ub-emsd-address-length)),
  *> 
  *>   -- emsd-address is a decimal integer in BCD (Binary Encoded Decimal)
  *>   -- format.
  *>   -- If it had an odd number of digits, it is padded with 0 on
  *>   -- the left.
  *> 
  *>   emsd-name                [0]     IMPLICIT OCTET STRING
  *>                                    (SIZE (0..ub-emsd-name-length))
  *>                                    OPTIONAL
  *> };
  *> 
  *> DateTime ::= INTEGER;
  *> 
  *> Iso8859String ::=  GeneralString;
  *> 
  *> AsciiPrintableString ::= [ APPLICATION 0 ]
  *>                          IMPLICIT Iso8859String (FROM
  *> 
  *>     (" "|"!"|"#"|"$"|"%"|"&"|"'"|"("|")"|"*"|"+"|","|"-"|"."|"/"|
  *>      "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|":"|";"|"<"|"="|">"|
  *>      "?"|"@"|"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
  *> 
  *> Banan                     Informational                      [Page 72]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *>      "N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"|"["|"]"|
  *>      "^"|"_"|"`"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|"l"|
  *>      "m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"w"|"x"|"y"|"z"|"{"|
  *>      "|"|"}"|"~"|"\"|""""));
  *> 
  *> ProtocolVersionNumber ::= [APPLICATION 1]    SEQUENCE
  *> {
  *>   version-major                   INTEGER,
  *>   version-minor           [0]     IMPLICIT INTEGER DEFAULT 0
  *> }
  *> END  -- end of EMSD-SubmissionAndDeliveryProtocol
  *> 
  *> 
  *> 
  *> 
  *> B  EMSD-IPM ASN.1 MODULE
  *> 
  *> This section compiles in one place the complete ASN.1 Module for
  *> EMSD-IPM.
  *> 
  *> 
  *> 
  *> EMSD-InterpersonalMessaging1995 DEFINITIONS ::=
  *> 
  *> BEGIN
  *> 
  *> IMPORTS EMSDORAddress, EMSDMessageId, AsciiPrintableString
  *>   FROM EMSD-SubmissionAndDeliveryProtocol;
  *> 
  *> ub-recipients  INTEGER ::= 256;
  *> ub-reply-to INTEGER ::= 256;
  *> ub-subject-field INTEGER ::= 128;
  *> ub-header-extensions INTEGER ::= 64;
  *> ub-emsd-name-length INTEGER ::= 64;
  *> ub-mime-version-length INTEGER ::= 8;
  *> ub-mime-content-type-length INTEGER ::= 127;
  *> ub-mime-content-id-length INTEGER ::= 127;
  *> ub-mime-content-description-length INTEGER ::= 127;
  *> ub-mime-content-transfer-encoding INTEGER ::= 127;
  *> 
  *> IPM ::=   SEQUENCE
  *> {
  *>   heading                              Heading,
  *>   body                                 Body OPTIONAL
  *> };
  *> 
  *> Heading ::= SEQUENCE
  *> {
  *>   -- Address of the sending agent (person, program, machine) of
  *>   -- this message. This field is mandatory if the sender
  *>   -- is different than the originator.
  *> 
  *> Banan                     Informational                      [Page 73]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *>   sender                      [0]     EMSDORAddress OPTIONAL,
  *> 
  *>   -- Address of the originator of the message
  *>   -- (not necessarily the sender)
  *>   originator                          EMSDORAddress,
  *> 
  *>   -- List of recipients and flags associated with each.
  *>   recipient-data                      SEQUENCE SIZE (1..ub-recipients)
  *>                                       OF PerRecipientFields,
  *> 
  *>   -- Flags applying to this entire message
  *>   per-message-flags           [1]     IMPLICIT BIT STRING
  *> 
  *>   {
  *>      -- Priority values
  *>      -- At most one of "non-urgent" and "urgent" may be specified
  *>      -- concurrently.  If neither is specified, then a Priority
  *>      -- level of "normal" is assumed.
  *>      priority-non-urgent             (0),
  *>      priority-urgent                 (1),
  *> 
  *>      -- Importance values
  *>      -- At most one of "low" and "high" may be specified
  *>      --  concurrently.  If neither is specified, then an
  *>      -- Importance level of "normal" is  assumed.
  *>      importance-low                  (2),
  *>      importance-high                 (3),
  *> 
  *>      -- Indication of whether this message has been automatically
  *>      -- forwarded
  *>      auto-forwarded                  (4)
  *>    }  OPTIONAL,
  *> 
  *>   -- User-specified recipient who is to receive replies to this
  *>   -- message.
  *>   reply-to                    [2]     IMPLICIT SEQUENCE SIZE
  *>                                       (1..ub-reply-to)
  *>                                       OF EMSDORAddress OPTIONAL,
  *> 
  *>   -- Identifier of a previous message, for which this message
  *>   -- is a reply
  *>   replied-to-IPM                       EMSDMessageId OPTIONAL,
  *> 
  *>   -- Subject of the message.
  *>   subject                     [3]     IMPLICIT AsciiPrintableString
  *>                                       (SIZE (0..ub-subject-field))
  *>                                                 OPTIONAL,
  *> 
  *>   -- RFC-822 header fields not explicitly provided for in
  *>   -- this Heading. For messages incoming from the external
  *>   -- world (i.e. in RFC-822 format), the Message-Id: field
  *> 
  *> Banan                     Informational                      [Page 74]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *>   -- need not go here, as it is placed in the
  *>   -- Envelope's EMSDMessageId (message-id) field.
  *>   extensions                [4]   IMPLICIT  SEQUENCE
  *>                             (SIZE (0..ub-header-extensions))
  *>                                   OF  IPMSExtension OPTIONAL,
  *> 
  *>   -- MIME Version (if other than 1.0)
  *>   mime-version            [5]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE
  *>                                   (0..ub-mime-version-length))
  *>                                           OPTIONAL,
  *> 
  *>   -- Top-level MIME Content Type
  *>   mime-content-type       [6]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..
  *>                                    ub-mime-content-type-length))
  *>                                              OPTIONAL,
  *> 
  *>   -- MIME Content Id
  *>   mime-content-id         [7]     IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..
  *>                                    ub-mime-content-id-length))
  *>                                             OPTIONAL,
  *> 
  *>   -- MIME Content Description
  *>   mime-content-description [8]    IMPLICIT AsciiPrintableString
  *>                                   (SIZE (0..
  *>                                ub-mime-content-description-length))
  *>                                             OPTIONAL,
  *> 
  *>   -- Top-level MIME Content Type
  *>   mime-content-transfer-encoding
  *>                            [9]     IMPLICIT AsciiPrintableString
  *>                      (SIZE (0..ub-mime-content-transfer-encoding))
  *>                                                OPTIONAL
  *> };
  *> 
  *> PerRecipientFields ::= SEQUENCE
  *> {
  *>   recipient-address                            EMSDORAddress,
  *>   per-recipient-flags                          BIT STRING
  *> 
  *>    {
  *>       -- Recipient Types.
  *>       -- At most one of "copy" and "blind-copy" may be
  *>       -- specified concurrently for a single recipient.  If
  *>       -- neither is specified, than the recipient
  *>       -- is assumed to be a "primary" recipient.
  *>       recipient-type-copy                             (0),
  *>       recipient-type-blind-copy                       (1),
  *> 
  *> 
  *> Banan                     Informational                      [Page 75]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *>       -- Notification Request Types.
  *>       -- Only one of "rn" and "nrn" may be specified
  *>       -- concurrently, \\x110011 for a single recipient.
  *>       -- "rn" implies "nrn" in addition.
  *>       notification-request-rn                         (2),
  *>       notification-request-nrn                        (3),
  *>       notification-request-ipm-return                 (4),
  *> 
  *>       -- Report Request Types
  *>       -- At most one of these should be set for a
  *>       -- particular recipient. "delivery" implies "non-delivery"
  *>       -- in addition.
  *>       report-request-non-delivery                     (5),
  *>       report-request-delivery                         (6),
  *> 
  *>       -- Originator-to-Recipient request for a reply.
  *>       reply-requested                                 (7)
  *>    }  DEFAULT { report-request-non-delivery }
  *> 
  *> };
  *> 
  *> IPMSExtension ::= SEQUENCE
  *> {
  *>   x-header-label                      AsciiPrintableString,
  *>   x-header-value                      AsciiPrintableString
  *> };
  *> 
  *> Body ::= SEQUENCE
  *> {
  *>   compression-method          [0]     IMPLICIT CompressionMethod
  *>                                                  OPTIONAL,
  *>   -- If compression method is not specified,
  *>   -- "no-compression" is implied.
  *> 
  *>   message-body                        OCTET STRING
  *>   -- See MIME for structure of the Body.
  *>   -- If a compression method is specified, the entire text containing
  *>   -- the Content-Type: element followed by the RFC-822 body are
  *>   -- compressed using the specified method, and placed herein.
  *> };
  *> 
  *> CompressionMethod ::= INTEGER
  *> {
  *>   -- Compression Methods numbered 0 to 63 are reserved for
  *>   -- assignment within this and associated specifications.
  *>   no-compression                  (0),
  *>   lempel-ziv                      (1)
  *> 
  *>   -- Compression Methods numbered between 64 and 127 may be
  *>   --  used on a bilaterally-agreed basis between peers.
  *> } (0..127)
  *> 
  *> Banan                     Informational                      [Page 76]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *> 
  *> END  -- end of EMSD-InterpersonalMessaging1995
  *> 
  *> 
  *> 
  *> C  RATIONALE FOR KEY DESIGN DECISIONS
  *> 
  *> This section summarizes the rationale behind key design decisions that
  *> were made while developing the EMSD Protocols.
  *> 
  *> 
  *> C.1  Deviation From The SMTP Model
  *> 
  *> SMTP is the main mail transport mechanism throughout the Internet.
  *> SMTP is widely deployed and well understood by many engineers who
  *> specialize in Internet email.  Because of these reasons, works based
  *> on SMTP or derived from it have a higher likelyhood of being widely
  *> deployed throughout the Internet.
  *> 
  *> However, SMTP is highly inefficient for transfer of short messages.
  *> SMTP's inefficiency applies to both the number of transmissions and
  *> also to the number of bytes transmitted.
  *> 
  *> Even when fully optimized with PIPELINING, SMTP is still quite
  *> inefficient.
  *> 
  *> Submission of a short message with SMTP involves 15 transmissions.
  *> Submission of a short message with SMTP and PIPELINING involves 9
  *> transmissions.  Submission of a short message with EMSD (EMSD-P and
  *> ESRO) involves 3 transmissions (in typical cases).
  *> 
  *> The key requirement driving the design of EMSD is efficiency.  It was
  *> determined that the at least 3 fold gains in efficiency justifies the
  *> deviation from the SMTP model.
  *> 
  *> 
  *> C.1.1  Comparison of SMTP and EMSD Efficiency
  *> 
  *> 
  *> The table below illustrates the number of N-PDUs exchanged for
  *> transfer of a short Internet email when using SMTP, SMTP and
  *> PIPELINING, QMTP and EMSD. The names used for identifying the PDUs are
  *> informal names.
  *> 
  *> 
  *> 
  *>         SMTP      SMTP + pipelining   QMTP, QMQP,   EMSD
  *>         -------   -----------------   ------------  -----------
  *> client: SYN       SYN                 SYN           Submit.Req
  *> server: SYN ok    SYN ok              SYN           Submit.Resp
  *> client: HELO      EHLO                message       ack
  *> 
  *> Banan                     Informational                      [Page 77]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *> server: ok        PIPELINING          accept close
  *> client: MAIL      MAIL RCPT DATA      close
  *> server: ok        ok
  *> client: RCPT      message QUIT
  *> server: ok        accept ok close
  *> client: DATA      close
  *> server: ok
  *> client: message
  *> server: accept
  *> client: QUIT
  *> server: ok close
  *> client: close
  *> 
  *> 
  *> 
  *> C.2  Use of ESRO Instead of TCP
  *> 
  *> In order to provide the same level of reliability that the existing
  *> email protocols provide for short messages, it is clear that a
  *> reliable underlying service is needed.  UDP [6], by itself, is clearly
  *> not adequate.
  *> 
  *> Use of TCP however, involves three phases:
  *> 
  *> 
  *>  1. Connection Establishment
  *> 
  *>  2. Data Transfer
  *> 
  *>  3. Disconnect
  *> 
  *> 
  *> Reliable transfer of a short message using TCP at a minimum involves 5
  *> transmissions as it is the case with QMTP.
  *> 
  *> The key requirement driving the design of EMSD is Efficiency.  It was
  *> determined that elimination of the extra 2 transmissions that are an
  *> inherent characteristic of TCP, justifies deviation from it.
  *> 
  *> ESRO protocol, as specified in (RFC-2188 [1]), provides reliable
  *> connectionless remote operation services on top of UDP [6] with
  *> minimum overhead.  ESRO protocol supports segmentation and reassembly,
  *> concatenation and separation.
  *> 
  *> Reliable transfer of a short message using ESRO involves 3
  *> transmissions as it is the case with EMSD-P.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 78]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *> C.3  Use Of Remote Procedure Call (RPC) Model
  *> 
  *> Many Internet protocols are "text-based".  Few Internet protocols are
  *> RPC based.  Protocols designed around the "text-based" approach have a
  *> better track record of acceptance throughout the Internet.
  *> 
  *> Considering that message submission and delivery in EMSD involve no
  *> more than two data exchanges, the text-based model becomes the same as
  *> an operation.  Furthermore, the RPC model is the natural way of using
  *> ESRO.
  *> 
  *> 
  *> C.4  Use Of ASN.1
  *> 
  *> In order to minimize the number of bytes transferred, efficient
  *> encoding mechanisms are needed.
  *> 
  *> Amongst today's encoding mechanisms, ASN.1 has the unique feature of
  *> separating the abstract syntax from the encoding rules.  By selecting
  *> ASN.1 as the notation used for expressing EMSD's information objects,
  *> EMSD has the flexibility of using the most efficient encoding rules
  *> such as Packed Encoding Rules (PER) when they are available.
  *> 
  *> Efficient encoding can always be better performed when the syntax of
  *> the information is known.  In general, encoding and compression
  *> techniques which use the knowledge of the syntax of the information
  *> produce better results than those compression techniques that work on
  *> arbitrary text.
  *> 
  *> 
  *> D  FURTHER DEVELOPMENT
  *> 
  *> Beyond this documentation of existing implementations, further
  *> development of EMSD protocol is anticipated.
  *> 
  *> The following deficiencies and areas of improvement are identified.
  *> 
  *> 
  *>   o Mapping of RFC-822 to EMSD-FS needs to be more explicit.
  *> 
  *>   o Mapping of EMSD-FS to RFC-822 needs to be more explicit.
  *> 
  *>   o Text of duplicate detection section needs more structure.
  *> 
  *>   o SubmissionControl operation needs more informative description.
  *> 
  *>   o The EMSD protocol can be extended to also support transfer of raw
  *>     RFC-822 text-based messages in addition to EMSD-FS. This would be
  *>     a trade-off in favor of "ease of implementation" against
  *>     "efficiency of bytes transfered".
  *> 
  *> 
  *> Banan                     Informational                      [Page 79]
  *> 
  *> RFC 2XXX                      EMSDP                       October 1998
  *> 
  *> 
  *>   o Provide mechanisms to support fully automated initial provisioning
  *>     of mail-boxes.
  *> 
  *> 
  *> Future development of the EMSD Protocol is anticipated to take place
  *> at http://www.emsd.org/.  Those interested in further development and
  *> maintenance of this protocol are invited to join the various mailing
  *> lists hosted at http://www.emsd.org/.
  *> 
  *> 
  *> References
  *> 
  *> [1] M. Banan, J. Cheng, and M. Taylor. At&t/neda's efficient short
  *>     remote operations (ESRO) protocol specification version 1.2.
  *>     Request for Comments (Informational) 2188, Neda Communications,
  *>     Inc., September 1997.
  *> [2] S. Bradner. Key words for use in RFCs to indicate requirement
  *>     levels. BC 2119, Internet Engineering Task Force, March 1997.
  *> 
  *> [3] D. Crocker. Standard for the format of ARPA internet text
  *>     messages. Request for Comments (Standard) STD 11, 822, Internet
  *>     Engineering Task Force, August 1982. (Obsoletes RFC733); (Updated
  *>     by RFC987); (Updated by RFC1327).
  *> 
  *> [4] Information Processing --- Open Systems
  *>     Interconnection --- Specification of Packed Encoding Rules for
  *>     Abstract Syntax Notation One (ASN.1). International Organization
  *>     for Standardization and International Electrotechnical Committee.
  *>     International Standard 8825-2.
  *> [5] Information Processing --- Open Systems
  *>     Interconnection --- Specification of Basic Encoding Rules for
  *>     Abstract Syntax Notation One (ASN.1). International Organization
  *>     for Standardization and International Electrotechnical Committee,
  *>     1987. International Standard 8825.
  *> 
  *> [6] Jon B. Postel. User Datagram Protocol. Request for Comments 768,
  *>     DDN Network Information Center, SRI International, August 1980.
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> 
  *> Banan                     Informational                      [Page 80]
  *> 
  *> INTERNET DRAFT			EXPIRES MAY 1998	INTERNET DRAFT
  *> 


Main Index | Thread Index
Document Actions
Libre/Halaal Internet Services Provided At LibreCenter By Neda

Member of By* Federation Of Autonomous Libre Services

This web site has been created based exclusively on the use of Halaal Software and Halaal Internet Application Services. It is part of the By* Federation of Autonomous Libre Services which in turn are part of the Halaal/Libre By* Digitial Ecosystem which incorporate the following software components: