
OPEN C Platform
Neda Document Number: 103-100-14

Revision: source unspecified

Last Updated: Author unspecified

Tag: CVS tag unspecified

Mohsen Banan
Neda Communications, Inc.

17005 SE 31st Place
Bellevue, WA 98008

July 13, 1998

2

Intel is a trademark of the Intel Corporation.
UNIX is a trademark of AT&T.
XENIX is a registered trademark of Microsoft Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
VRTX is a trademark of Hunter & Ready Inc.
VMS and VAX are trademarks of Digital Equipment Corporation.
IBM and PC are trademarks of International Business Machines
Corporation.

This document describes the Open C Platform Library, a utility which
aids in the consistency of portable implementation of data
communications software.

Copyright c©1988, 1989, 1994 Mohsen Banan.
Copyright c©1994-1997 Neda Communications, Inc.

Published by Neda Communications, Inc.
3610 164th Place SE
Bellevue, WA 98008 USA

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the Copyright holders.

Contents

1 INTRODUCTION 17
1.1 Lower Layers . 18
1.2 Target Environment . 18
1.3 Development Environment . 19
1.4 The Open C Environment . 19
1.5 Definition of Terms . 19

2 OPEN C ENVIRONMENT 23
2.1 Open C Layer Architecture . 23

2.1.1 Upper Interface . 23
2.1.2 Lower Interface . 25
2.1.3 Network Management Interface . 25
2.1.4 Open C Platform Interface . 25
2.1.5 Significant Events . 25

3 CONVENTIONS 27
3.1 Identifier Naming . 27
3.2 Identifier Naming Details . 28

3.2.1 Naming GuideLines . 29
3.2.2 Abbreviations . 29
3.2.3 Rationale . 30

3.3 Source File Names . 31
3.4 Implementation of Sequences and Sets . 31
3.5 Restrictions on Usage of Features in C . 32
3.6 Compile Time Configuration . 33
3.7 Global Standard Definitions (estd) . 34

4 COMMON FEATURES OF A LAYER 35
4.1 A Layer’s Interfaces . 35

4.1.1 Initialization . 36
4.1.2 SAP Management . 36
4.1.3 Upper Interface . 37
4.1.4 Lower Interface . 37
4.1.5 Layer Management Interface . 37

3

4 CONTENTS

4.2 Usage of Resources . 37
4.3 Integration of Layers . 38

4.3.1 The G module . 38

5 MODULE MANAGEMENT ARCHITECTURE 41
5.1 Module Management (MM) . 41

5.1.1 Module Management Initialization . 47
5.1.2 Module Management Entity (MME) facilities . 47
5.1.3 Module Management Agent facilities . 50

5.2 Layer Management Entity Interface . 54

6 OPEN C PLATFORM 55
6.1 OCP Interfaces . 56
6.2 Environment Specific Facilities (SF) . 56

6.2.1 Obtaining Memory . 56
6.2.2 Synchronization . 57
6.2.3 Atomic Queue Operations . 57
6.2.4 Scheduling . 59
6.2.5 Timer Facilities . 59

6.3 Execution Scheduler (SCH) . 60
6.4 Byte Ordering (BO) . 62
6.5 Byte String (BS): . 63
6.6 Queue Module (QU) . 64

6.6.1 QU Macros . 66
6.7 Sequence Module (SEQ) . 68

6.7.1 Example Usage . 68
6.8 Non-Volatile Queue (NVQ) . 70

6.8.1 NVQ ReturnCode . 70
6.8.2 NVQ create . 71
6.8.3 NVQ open . 71
6.8.4 NVQ close . 72
6.8.5 NVQ delete . 72
6.8.6 NVQ VIEW HEAD . 72
6.8.7 NVQ VIEW TAIL . 73
6.8.8 NVQ VIEW ELEM . 73
6.8.9 NVQ INSERT AT HEAD . 74
6.8.10 NVQ INSERT AT TAIL . 75
6.8.11 NVQ INSERT BEFORE . 75
6.8.12 NVQ INSERT AFTER . 76
6.8.13 NVQ REMOVE HEAD . 77
6.8.14 NVQ REMOVE TAIL . 77
6.8.15 NVQ REMOVE ELEM . 77
6.8.16 NVQ FIRST . 78
6.8.17 NVQ LAST . 78
6.8.18 NVQ NEXT . 79
6.8.19 NVQ PREV . 79

CONTENTS 5

6.8.20 NVQ EQUAL . 79
6.9 Exception Handling (EH) . 81
6.10 Log Module (LOG) . 81

6.10.1 Log Module Initialization . 82
6.10.2 LOG User Initialization . 82
6.10.3 Log Message Display . 82

6.11 Trace Module (TM) . 83
6.11.1 Trace Module Initialization . 85
6.11.2 TM User Initialization . 85
6.11.3 Trace Message Display . 86
6.11.4 Example Usage . 86
6.11.5 Run Time Control of TM . 88

6.12 SAP management (SAP) . 88
6.12.1 Representation of a SAP Address . 88
6.12.2 SAP Address Manipulation Facilities . 89

6.13 Timer Management Module (TMR) . 89
6.13.1 Starting a Timer . 91
6.13.2 Stopping a Timer . 91
6.13.3 Associating User Data with Timers . 92
6.13.4 Implementation Specific Interfaces . 92
6.13.5 Example Usage . 93

6.14 Data Unit Management (DU) . 99
6.14.1 Creation of a Pool . 101
6.14.2 Creation of a Data Unit . 104
6.14.3 Creating a new View . 104
6.14.4 Freeing a View . 104
6.14.5 Manipulating a View’s Data . 104
6.14.6 Accessing a View’s User Information . 105
6.14.7 Example Usage . 105

6.15 Buffer (BUF) . 107
6.15.1 Allocate and Free a Buffer . 108
6.15.2 Add, Get, and Unget an Octet . 109
6.15.3 Allocate and Assign a New Buffer Segment . 110
6.15.4 Prepend a Buffer . 110
6.15.5 Get the Next Chunk of a PDU . 111
6.15.6 Append a String to a Buffer . 111
6.15.7 Append One Buffer to Another . 112
6.15.8 Reset Buffer Pointers . 112
6.15.9 Copy a Buffer . 113
6.15.10 Clone a Portion of a Buffer . 113
6.15.11 Get the Length of a Buffer . 114
6.15.12 Display a Buffer . 114

6.16 Configuration Module (CFG) . 115
6.16.1 Open and Close a Configuration File . 116
6.16.2 Get a Section . 117
6.16.3 Get a Parameter . 117

6 CONTENTS

6.16.4 Operate on Parameter Values . 117
6.16.5 Permanance . 118

6.17 Subscriber Profile Module (PROFILE) . 119
6.17.1 Open and Close a Profile Library . 120
6.17.2 Add an Attribute to a Profile . 121
6.17.3 Search a Profile . 122
6.17.4 Get an Attribute Value . 123

6.18 Abstract Syntax Notation (ASN) . 123
6.18.1 Trace Flags . 124
6.18.2 Functions . 125
6.18.3 Functions . 125
6.18.4 ASN tableEntry Declaration . 125

6.19 Finite State Machine (FSM) . 126
6.19.1 State Machine Functions . 127
6.19.2 Transition Diagram Functions . 128
6.19.3 FSM Usage Examples . 129

6.20 User Datagram Protocol Point of Control & Observation (UDP PCO) 140
6.20.1 Initializing the Package . 141
6.20.2 Creating a SAP . 141
6.20.3 Removing a SAP . 142
6.20.4 Sending Data via a SAP . 142
6.20.5 Receiving Data via a SAP . 142
6.20.6 Logging User Data . 142
6.20.7 Intentionally Interrupting User Data . 143
6.20.8 Build Options . 143
6.20.9 Example . 144

6.21 IMQ . 144
6.22 UPQ . 145
6.23 Release Identification Module (RELID) . 146

6.23.1 Generation of RELID String . 147
6.23.2 Example Usage . 147

6.24 Copyright Notice Module (CPR) . 148
6.25 License Module (LIC) . 148

6.25.1 Generating A License File . 149
6.25.2 Checking Against a License File . 150

6.26 Integer To English (int2english) . 150
6.26.1 PF intToCardinalEnglish . 150
6.26.2 PF intToOrdinalEnglish . 151
6.26.3 PF intToDigitEnglish . 151
6.26.4 PF strToDigitEnglish . 151

7 EXAMPLE USAGE OF THE PLATFORM 153

CONTENTS 7

8 IMPLEMENTATION OF THE PLATFORM 155
8.1 Implementation Map . 155
8.2 Un-hosted Facilities . 157
8.3 Hosted Facilities . 157
8.4 Portable Facilities . 157

8.4.1 TM Module . 158
8.5 Supported Operating Systems . 158

8.5.1 UNIX . 158
8.5.2 MS-DOS . 160
8.5.3 VMS . 161

9 DEVELOPMENT ENVIRONMENT 163
9.1 Supported Development Environments . 163

9.1.1 Solaris . 163
9.1.2 Windows NT . 163
9.1.3 Windows 95 . 163
9.1.4 DOS . 164

9.2 Supported Compilers . 164
9.2.1 GCC . 164
9.2.2 Microsoft Visual C++ Developer Studio . 164
9.2.3 Borland C 4.5 . 164
9.2.4 Purify . 164

9.3 Supported Target Environments . 164
9.3.1 Solaris . 165
9.3.2 Windows NT . 165
9.3.3 Windows 95 . 165
9.3.4 DOS . 165
9.3.5 Windows CE . 165
9.3.6 Embedded . 165

9.4 General Philosophy . 165
9.5 Build Mechanisms . 166

9.5.1 Adding New Modules . 166
9.5.2 Adding Support For New Compilers . 166

A GNU LIBRARY GENERAL PUBLIC LICENSE 167

8 CONTENTS

List of Tables

9

10 LIST OF TABLES

List of Figures

1.1 Open C Environment . 20

2.1 Architecture of a Layer . 24

3.1 Operating Environment Configuration . 34

4.1 Example of g.h . 39

5.1 Network Management Architecture . 42

6.1 SF Example Source Code . 59
6.2 SCH Example Source Code . 62
6.3 Queue Insertion . 67
6.4 QU and SEQ Example Usage Source Code . 70
6.5 TM Example Usage Source Code . 87
6.6 TMR Module Example Usage Source Code . 99
6.7 An Allocated View . 102
6.8 A Free View . 103
6.9 DU Module Example Usage Source Code . 106

7.1 Sample Simple Short Stack . 154

8.1 Implementation Map . 156
8.2 Trace Module Bit Definitions . 159

11

12 LIST OF FIGURES

Foreword

Realization of global connectivity through the concept of Open Systems Interconnection (OSI) will be the reward of
a significant collective effort. The development of OSI over the past ten years has involved the collective efforts of
many experts from many countries.

A great deal of the development of OSI is in its final stages. Fruits of these efforts are beginning to appear in our
daily lives as implementation of OSI protocols. The future of OSI is very exciting and its impact on our lives will be
significant.

This book focuses on creating an environment (a model, and architecture and a platform) for software implemen-
tation of OSI protocols. It is assumed that the reader is familiar with the concepts of OSI Reference Model. This book
establishes a reference model for portable software implementation of OSI in C.

Although the primary intent of this book is to establish a platform for implementation of International Standards
Organization (ISO) specification of OSI protocols, a great deal of the contents of this book applies to layered software
implementation in general.

The C programming language has proven itself as a popular portable and efficient language for implementation
of data communications software. The implementation environment described in this book is centered around C. It is
assumed that the reader has a working knowledge of C.

Software implementation of OSI protocols that adhere to the ”Open C Environment” (OCE) described in this book
can be integrated to realize efficient real open systems. The environment presented in this book has been used for
implementation of a number of ISO specification of OSI protocols. Any C compiler that conforms to the ANSI C
specification can be used to port this implementation platform to the target environment.

It is the aim of this book to refine the abstract descriptions of the OSI model as they apply to software imple-
mentation in C. An implementation environment that provides for efficient integration of OSI protocols is created.
Specification of OSI protocols, C language and the environment described in this book provide for portable and effi-
cient realization of real open systems.

Implementors, system architects, system programmers, application programmers and anyone who is interested in
understanding the implementation aspects of OSI can benefit from reading this book. This book can be used to teach
the practical aspects of data communications software development in conjunction with other books that deal with the
concepts of Open Systems Interconnections.

The structure of this book is as follows. Chapter 1 provides an introduction to the issues involved in implementation
of OSI. Chapter 2 describes the Open C Environment. Chapter 3 outlines a number of conventions followed in defining
the Open C Platform. Chapter 4 outlines the common features of the implementation layers. Chapter 5 deals with the
architecture of network management. Chapter 6 describes the interface and service definition for Open C Platform.
Chapter 7 provides an example usage of Open C Platform. Chapter 8 deals with implementation issues. Appendix A
contains a set of UNIX style manual pages for facilities of Open C Platform.

13

14 LIST OF FIGURES

Acknowledgement
Many of the implementation techniques outlined in this book are very similar to the ones practiced by NBS 1, Retix
and a number of other implementors. Little, if any, of the credit for the implementation techniques should go to
the author. My goal has been to combine these commonly practiced good techniques into an environment that may
facilitate the realization of OSI.

I wish to thank my colleagues at Retix who inspired the ideas behind many of the concepts appearing in this book.
A number of individuals at several companies have contributed to the creation and expansion of sections of this

manual as well as the software itself. Neda Communications, Inc. leads the effort of maintaining and documenting the
majority of the software.

Significant contributions to this work resulted from the use of OCP by AT&T Wireless Services.
Finally, a number of individuals who have made contributions to the OCP library and this document deserve special

recognition.

• Derrell Lipman - Visual Aviation derrell@vis-av.com

• Sanjay Bapat - PCSI, Inc. SPB@pcsi.cirrus.com

• Mohsen Banan - Neda Communications, Inc. mohsen@neda.com

• Steve Farowich - Neda Communications, Inc. steve@neda.com

• Kamran Ghane - Neda Communications, Inc. kamran@rostam.neda.com

• Fletch Holmquist - Neda Communications, Inc. fletch@neda.com

• Hugh Shane - Neda Communications, Inc. hshane@neda.com

We look forward to continued growth of the OCP library. Please send your feedback, including code contributions,
to

Mohsen Banan - Neda Communications, Inc. mohsen@neda.com

About This Document
This manual is written in LATEXinfo. LATEXinfo is a documentation system that uses a single source file for both on–line
documentation and a printed manual. See the LATEXinfo Manual for more details [?].

The on–line documentation is in the form of an Info file. An on-line Info file is a file formatted so that the Info
documentation reading program can operate on it. Info files are divided into pieces called nodes, each of which
contains the discussion of one topic. M-x info in emacs and xinfo under X11 are two Info documentation reading
programs that can be used for on-line manipulation of this manual.

Release Information
Module openCPlatform
Was released as Revision: on by The name tag for this release is The file capturing this release is

1now NIST.

LIST OF FIGURES 15

Caveats
This manual is mostly complete and has gone through a few drafts. However, it is far from being flawless.

This document should be fully correct in what it does say; and it is therefore open to criticism on anything it
does include — from specific examples and descriptive text, to the ordering of chapters and sections. If something is
confusing or incorrect, then perhaps the document should be fixed.

As you use this document, please mark pages with corrections so you can later look them up and send them in.
Please reference any comments to the chapter name and section name, since page numbers and chapter and section
numbers will change.

Comments
Comments concerning this document should be addressed to:

E-Mail: mohsen@neda.com

Postal Address:
Mohsen Banan
Neda Communications, Inc.
17005 SE 31st Place
Bellevue, WA 98008

Fax: (425) 562-9591

16 LIST OF FIGURES

Chapter 1

INTRODUCTION

International Standards Organization (ISO) specification of OSI model and protocols are based on a number of abstract
descriptions which specify essential requirements but make no mention of how these requirements should be met by
an implementation.

Typically each OSI layer has two sets of specifications: One for the services provided by the protocol and one for
the protocol. Service specifications for each layer are normally described in a high level of abstraction. The interfaces
for the service definition is left at the level of primitive. Furthermore, the ISO specifications do not deal with any
details concerning the mechanism used to exchange primitives across a layer interface.

Lack of a standard interface or a standard mechanism for exchange of primitives across a layer interface can cause
severe problems in implementation of machine independent OSI software.

OSI Reference Model offers a number of features that are well aligned with today’s software implementation
methodology. To name a few:

• OSI model subdivides the communications functions into logically separate modules.

• Exclusive peer-to-peer interaction.

• A well defined service definition expected from each layer.

• Independence of protocol specification from the services expected from the protocol.

A well defined model, architecture and interface provides for integration of independent implementations of OSI
protocols. It is the aim of this book to refine the abstract descriptions of the OSI model and create a software imple-
mentation environment (A model, an architecture and a platform) that facilitates the implementation of OSI.

Given today’s state of technology a number of observations are made.

• The specification of the bottom five layers of OSI have been adopted as ISO standards and are well understood.

• C language has been recognized as a standard for portable and efficient implementation of data communication
software.

• A correct, efficient and environment independent implementation of OSI protocols is very desirable.

The author therefore feels that the time is right for creation of a software environment that can facilitate the
realization of OSI. Such a platform should be:

17

18 CHAPTER 1. INTRODUCTION

• Operating Environment (Operating System/ CPU/ Hardware) independent.

• Efficient.

• Consistent.

• Expandable.

This has been the motivation behind the creation of ”Open C Environment” (OCE) for implementation of OSI.
OCE is a set of architectural guide lines, conventions and a platform for portable implementation of OSI software.
Independent implementations of OSI protocols that adhere to OCE can easily be integrated to realize real open systems.

A platform of facilities that can ease the implementation of OSI protocols is provided. One of the primary goals
of this book is to formally define the interface to this platform of facilities.

1.1 Lower Layers
The nature of the different services expected of the different layers results into particular services expected from
the implementation environment. The lower layers (Transport, Network, Data Link and Physical) are responsible for
transport of unstructured data. The upper layers (Application, Presentation and Session) deal with the structure, syntax
and semantics of the communication.

The upper layers expect more services form their implementation environment than the lower layers. The imple-
mentation environment expected by the upper layers can be considered as an extension of the lower layers implemen-
tation environment.

It is recognized that at this time only the bottom five layers have matured. This book’s primary focus is to create
an implementation environment for the lower layers.

1.2 Target Environment
One of the goals for the creation of Open C Environment for implementation of OSI is portability and environment
independence. Two basic categories of target environments are identified.

• Hosted

• Un-Hosted

The Hosted-Environment is an environment in which the existance of an operating system and multitasking ca-
pabilities may be assumed. The availability of facilities such as scheduling, timers, synchronization and dynamic
memory allocation are often available in Hosted-Environments. UNIX, VMS, MS-DOS and VRTX are examples of
hosted environments.

The Unhosted-Environment is an environment in which the existance of no facilities may be assumed. The under-
lying environment should at least provide:

• CPU

• Adequate amount of memory

• Periodic interrupt

1.3. DEVELOPMENT ENVIRONMENT 19

Bare, intelligent, front-end processors are examples of Unhosted-Environments.
Open C Environment is designed to exist in Hosted and Unhosted environments. In Hosted-Environments, the

interface to host facilities should be mapped on to the Open C Platform interface definitions. Design of OCE does
consider well-behaved existance in Hosted-Environments.

The type of environment specific facilities defined in OCE are basic and simple. These facilities can easily be
implemented from scratch in Un-Hosted environments.

1.3 Development Environment

A C compiler, an assembler, a linker, and a loader are expected of a development environment necessary for use of
OCE.

The primary development environment used by the author is UNIX.

1.4 The Open C Environment

This section defines the relationship between OCP and the various components in it’s Environment. In the following
discussion refer to the diagram in Figure 1.1

The diagram as a whole represents a particular implementation of an Open C Layer. The Application, repre-
sented as the highest level component, is the body of software that is unique to a given application or service. The
CPU/Memory combination, at the lowest level, represents the minimum computing functionality that OCP requires.
The Operating System, which may or may not exist on a given computing platform, provides some set of services to
OCP. Finally, a particular C Compiler is used to generate machine executable code.

For example, in the case of a Unix workstation, the CPU might be a 64-bit processor with gigabytes of virtual
memory. The operating system would provide a wide range of services including disk file I/O, interprocess communi-
cation, and network services.

On the other hand, a portable messaging device might use a 16-bit processor with 64 kilobytes of memory while
the operating system might be nothing more than a simple task scheduler.

OCP isolates the Application from all of this underlying complexity and variability. Once OCP is ported to a given
Open C Environment (CPU/Memory, Operating System, and Compiler) any Application developed under one Open
C Environment can easily be ported to another.

1.5 Definition of Terms

Definitions, notation, abbreviation and terminology used in this book are consistent with the terminology and princi-
ples established by ISO for Open Systems interconnection.

The OSI reference model is based on a number of ’abstract’ descriptions. In our implementation model, these ab-
stract descriptions are refined to define the precise context they take as they apply to this implementation architecture.

Facility To evade the question of whether an operation is implemented as a function or a preprocessor macro, the word
facility is used. What is of interest is the facility’s interface description. Most of the facilities are described as
if they were functions. But when efficiency justifies the equivalent may be implemented as macro. With this
understanding, ’facility’ and ’function’ are used interchangeably.

20 CHAPTER 1. INTRODUCTION

CPU / Memory / Clock InterruptCompiler

Operating System

Application

OCP

Figure 1.1: Open C Environment

1.5. DEFINITION OF TERMS 21

Module Typically a set of related facilities and data abstractions are combined into a module. The facility is typically
realized by a link module (e.g. a library) and a declaration module. The correct way to use a facility is to
have, at the beginning of the user program, a preprocessor #include command to include the relevant facility
declarations.

Open C Environment OCE is a set of architectural guide lines, conventions and a well defined platform interface
that can ease portable implementation of OSI software.

Open C Platform OCP is a collection of modules that provide the basic facilities expected by lower layers. The
interface to these facilities is described in this book.

Open C Layer An OCL is an implementation of an OSI layer that adheres to the architecture of Open C Environment.

Service Provider A module responsible for providing some well defined set of services through a well defined set of
interfaces.

Service User A module that uses the services of a service provider.

Primitive A facility expressing an interaction between a service user and a service provider.

Parameter A facility argument to a primitive.

Primitive Action A facility invocation into the service provider module. Primitive actions are provided in the service
provider module and invoked by the service user. Primitive action is the collective name for requests and
responses.

Primitive Event A facility invocation outside of the service provider module. Typically in the service user module.
Primitive events are provided in the service user module and invoked by the service provider. Primitive event is
the collective name for indications and confirmations. The set of primitive events to be used are communicated
to the service provider during the creation of the service access point.

Request A primitive issued by the service user to express a request for a service from the service provider.

Indication A primitive issued by the service provider to indicate that a request has been issued by the service user at
the peer service access point or to communicate a local event to the service user.

Response A primitive issued by the service user in response to some indication previously invoked by the service
provider.

Confirm A primitive issued by the service provider in response to some response previously issued by the service
user.

Service Access Point A service access point (SAP) is defined as the interface between a service user and a service
provider. Each SAP is identified by the service provider through a SAP-Address-Selector.

Connection End Point An (N) connection is an association established by the (N) layer between two or more (N+1)
entities for the transfer of data. An (N) connection end point (CEP) is a terminator at one end of an (N)
connection within an (N)-SAP. An (N) connection end point identifier (CEP-ID) is a unique representation of a
CEP within the scope of the (N) service

sequence-of Borrowed from ASN.1. sequence-of type: A structured type, defined by referencing a single existing
type; each value in the new type is an ordered list of zero, one or more values of existing type.

22 CHAPTER 1. INTRODUCTION

set-of Borrowed from ASN.1. set-of type: A structured type, defined by referencing a single existing type; each value
in the new type is an unordered list of zero, one or more values of the existing type.

Chapter 2

OPEN C ENVIRONMENT

Open C Environment is a set of architectural guidelines, conventions, and a common platform that allow for efficient
implementation and integration of OSI protocols in C. Open C Environment defines the architecture and the mech-
anism used for exchange of primitives across layer interfaces. Open C Platform defines the interfaces to a set of
common facilities that may be used by Open C layers.

An Open C Layer is the implementation of an OSI protocol that conforms to Open C Environment architecture and
guidelines. Direct function calls are used for exchange of primitives across Open C layers. This simple and efficient
primitive exchange mechanism allows for integration of Open C Layers into multi-layered communication entities.
Other methods for exchange of service primitives (such as interprocess or interprocessor communication facilities)
often result into performance degradation across layer boundaries.

Once the upper and the lower interfaces of a Layer are defined (based on the service definitions), independent
implementors can implement Open C Layers. Since the upper interface of implementation of (N) layer protocols
match the lower interface of implementation of (N+1) layer protocols, several Open C Layers can be integrated into a
multi-layered communication software entity.

2.1 Open C Layer Architecture
An Open C Layer is a cohesive piece of software that provides a well defined service and has a set of well defined
interfaces. An OSI Open C Layer implements an OSI protocol. Open C Layers have a consistent design architecture.
Each implementation of an OSI protocol, provides to its user the set of services defined for that protocol at its upper
interface. It assumes the services of the layer below it to be present at its lower interface.

A typical software layer (N) appears to its user as a link module with four defined interfaces. The figure below
(Figure 2.1) presents an interface model for the (N) software module.

2.1.1 Upper Interface
The (N) Open C Layer is expected to provide the services defined for the (N) layer at its upper interface. The (N) Open
C Layer’s upper interface is a series of function calls (primitives). Each function call accepts a group of arguments
(parameters). Each function call is non-blocking.

(N) request and responses, collectively referred to as (N) action primitives, are function calls into the (N) Open C
Layer. (N) action primitives are invoked by the (N) service user. The code for (N) action primitives is inside the (N)

23

24 CHAPTER 2. OPEN C ENVIRONMENT

 (N) - SAP
 MANAGEMENT

 (N)
 OPEN C
 LAYER

 (N)
 ACTION
 PRIMITIVES

 (N)
 EVENT
 PRIMITIVES

 (N-1)
 EVENT
 PRIMITIVES

 (N-1)
 ACTION
 PRIMITIVES

 (N-1)-SAP
 MANAGEMENT

 OPEN C
 PLATFORM
 INTERFACE

 NETWORK
 MANAGEMENT
 INTERFACE

Figure 2.1: Architecture of a Layer

2.1. OPEN C LAYER ARCHITECTURE 25

Open C Layer.
(N) indication and confirmations, collectively referred to as (N) event primitives, are function calls outside of the

(N) software module. (N) event primitives are invoked by the (N) software module. The code for (N) event primitives
is expected to be provided by the (N) service user. The entry point for (N) event primitives is conveyed to the (N) layer
during the creation of the service access point by (N) service user.

2.1.2 Lower Interface
The (N) Open C Layer may use the services defined for the (N-1) layer at its lower interface. The lower interface of
the (N) software module matches the upper interface of (N-1) software module.

2.1.3 Network Management Interface
Operation of an OSI layer may be monitored and manipulated by the Network Management Administrator. To provide
for this each Open C Layer is responsible for providing an interface that allows for network management administra-
tion.

Within each Open C Layer, often a Layer Management Entity (LME) is responsible for defining and providing the
network administration interface.

2.1.4 Open C Platform Interface
An Open C Layer can rely on the services provided by the Open C Platform. The interface and the description of the
services provided by the Open C Platform is described in this book.

2.1.5 Significant Events
The following is a list of significant events that result into execution of code inside of (N) Open C layer.

• (N) Initialization.

• (N) SAP Management.

• (N) Action Primitives.

• (N-1) Event Primitives.

• Timer Expiration Events (See TMR module).

• (N) Re-Scheduling Request.

26 CHAPTER 2. OPEN C ENVIRONMENT

Chapter 3

CONVENTIONS

A set of programming conventions and restrictions are followed to improve portability and readability. These conven-
tions are visible to the software modules that interface with Open C Platform. For sake of consistency it is suggested
that the following simple conventions be adapted when interfacing with other elements of Open C Environment.

Good programming conventions can result in improvements in consistency, portability, readability and writability.
The development environment and the nature of the software developed have a large influence on the styles and
conventions that are adapted. As the development environment and software engineering methodology evolve, the
stylistic notations and conventions will also evolve.

The identifier naming conventions described here are consistent with ISO’s conventions in specification of ASN1
definitions. These naming conventions are also consistent with the conventions followed in the C bindings produced
by MAP and TOP groups. There are some differences but these are minor.

3.1 Identifier Naming
The identifier naming conventions include:

• Variables, functions, parameters and struct fields beginning with lower-case, then upper and lower-case mixed.
N sapCreate and sapAddr are examples of function and parameter identifiers in the following example. ”N ” in
”N sapCreate” is a module prefix and is not subject to this convention.

N_SapDesc
N_sapCreate(sapAddr)
N_SapAddr *sapAddr;

• Typedefs, struct/Union/enum tags named with upper-case groups. Beginning with upper case, then lower and
upper-case mixed:

String, struct N_SapAddr

• #define and enumerated constants named with upper-case letters:

FALSE, MAXLENGTH

27

28 CHAPTER 3. CONVENTIONS

• Identifiers exported by a module prefix followed by an ’ ’. The module prefix can be 1 to 4 letters long.

QU_init, TMR_Desc, N_SAPLENGTH

The layout of expressions and statements follow those in the book written by Kernighan and Ritchie entitled ”The
C Programming Language”.

The few simple conventions mentioned above are adequate for describing the basic guide lines. The following
section describe in more detail the naming conventions followed and the rationale behind it.

3.2 Identifier Naming Details

The naming conventions recommended in this section are specific to the C programming language. These conventions
take full advantage of the identifier naming facilities offered by the standard definition of C language. Lower and
upper case letters as well as ’ ’ are used in this naming convention. All identifiers are expected to be unique with in
the first 24 characters.

Concept of a module and hiding in C is limited to the source file. The scope of an identifier outside of a source file
is global. Explicit importing and exporting of identifiers is not supported in standard C. This naming convention tries
to address this known deficiency in C.

All identifiers are composed of two elements: module prefix and qualifier. Each module is identified by a module
prefix. A module prefix is a short name (normally 1 to 4 characters long) followed by an ’ ’. The case of the module
prefix specifies the scope of the identifier with regard to that module. Identifiers exported by a module, have an all
upper-case module prefix. An all lower case module prefix signifies that although the identifier is needed by more than
one source file within the implementation of the module, it is purely private to the module and need not be exposed
to any users of the module. Purely local identifiers need not have the module prefix component and consist of a pure
qualifier. In addition to conveying the scope of the identifier, this convention results in prevention of naming collisions
across independent modules.

The qualifier component of an identifier mainly conveys the semantic attributes of the identifier. The qualifier
component may consist of many words. With the exception of the first word, all following words start with upper-
case. The first character of the qualifier conveys some type information. Variables, functions, parameters and structure
fields begin with lower-case, the then upper and lower-case mixed. Typedefs, struct/union/enum tags named with
upper-case groups. Although not clearly specified in the language definition, typedefs name space is different from
struct/union/enum tags name space. Name space overloading is encouraged.

This convention results into clear usage of the same name for a number of related identifiers. This is demonstrated
in the following example.

typedef struct SapSelector {
Int len;
Byte addr[NSAPSZ];

} SapSelector;

SapSelector sapSelector;

Same descriptive name ”sapSelector” is used for the structure tag identifier, the type definition identifier and the
variable identifier for a generic instance.

3.2. IDENTIFIER NAMING DETAILS 29

3.2.1 Naming GuideLines
A set of recommendations are proposed for qualifier naming.

Grouping/Classing A concept is often expressed through a set of related identifiers. Within a module, related identi-
fiers can be grouped in a variety of ways. Grouping with regard to the data class often works fine. Take the case
of SAP management in ”N ” module, N sapCreate, N sapDelete, n SapInfo, N SapDesc would be considered
natural choices.

Procedures A verb followed by noun is often a good choice.

Labels Same as Procedures.

Booleans A phrase expressing the TRUE case of the variable.

3.2.2 Abbreviations
A number of abbreviations are commonly used to express well defined concepts with in the scope of OSI implemen-
tation. These abbreviations are commonly used for identifier naming.

Req A request primitive.

Rsp A response primitive.

Ind An indication primitive.

Cnf A confirmation primitive.

Sap Service Access Point.

Cep Connection End Point.

Du Data Unit.

Pdu Protocol Data Unit.

Sdu Service Data Unit.

Pci Protocol Control Information.

Buf Buffer.

Addr Address.

Sel Selector.

Src Source.

Dst Destination.

Loc Local. Matches with Rem.

Rem Remote. Matches with Loc.

30 CHAPTER 3. CONVENTIONS

Seq Sequence. Head of a linked list of ordered elements.

Set (Noun) Head of a linked list of unordered elements.

Elem Element. An element in a sequence, queue, set.

Next Matches with prev. A valid value.

Prev Previous. Matches with next. A valid value.

Last Matches with first. A valid value.

First Matches with last. A valid value.

Lim Limit. Not a valid value.

Min Minimum. A valid value. Compile or link time constant.

Max Maximum. Not a valid value. Compile or link time constant.

Info Information. Often used to provide an internal representation of a resource.

Desc Descriptor. Often used to provide a public handle to a resource.

Ref Reference. Often used as a prefix to provide a handle to a resource.

Prov Provider. To identify roles in a service provider/user situation.

User To identify roles in a service provider/user situation.

Cur Current.

Val Value.

Init Initialize.

Term Terminate.

Get Retrieve an information object from an information base.

Set (Verb) Set an information object in an information base.

3.2.3 Rationale
The primary intentions of the identifier naming convention mentioned above is to convey important information about
identifiers while keeping the names short and natural.

The following is a partial list of the intentions of this naming convention.

• Maximize conveying important identifier attributes while keeping the names short and natural.

• Emphasis on semantic information. An identifier’s primary responsibility is to convey the natural aspect of what
it represents.

3.3. SOURCE FILE NAMES 31

• Emphasize module definition and highlight scope recognition. Definition of C language is limited in its ability
with regard to modularity and hiding to one source files. This naming convention extends the module and scope
concepts beyond one source module.

• It is recognized that complete type information about all identifiers is accessible through their definition and
context. Proper tools may be used to perform syntax type checking improve reliability. Some information
regarding the type of the identifier is conveyed in this naming convention. The conventions with regard to type
allow for name space over loading and minimize name selection.

3.3 Source File Names
Recognizing the restrictions that may be imposed by the development environments that may be used, the following
conventions are recommended.

• Base of the file name is limited to 8 characters. The extension of a file name is limited to 3 characters.

• Only lower case letters and ’ ’ may be used in file name specification.

• C header files have a ”.h” extension.

• C source files have a ”.c” extension.

With these restrictions even MS-DOS development environment can be supported.

3.4 Implementation of Sequences and Sets
The concepts of ASN.1 sequences-of and sets-of are not inherent in C. Arrays are adequate for static usage. Dynamic
usage is often implemented through the usage of linked lists. For implementation purposes set-of and sequence-of are
considered the same. Relevance of order is the user’s view and not an implementation issue. Only the implementation
of sequence-of is described here.

ASN.1 sequence concept maps to struct in C. With this understanding, for design purposes a shorthand notation is
adapted to make the concept of sequence-of more natural to C. The following keyword extension are made:

sequence
sequenceof

Their usage is similar to struct and union. sequence specifies an element of a list. sequenceof specifies the head of
a list. These are based on the QU and SEQ module. sequence and sequenceof can be used for data or instance
declaration.

Consider the following example:

typedef sequence SomeInfo {
Int someField;

} SomeInfo;

Which is equivalent to:

32 CHAPTER 3. CONVENTIONS

typedef struct SomeInfo {
struct SomeInfo *next;
struct SomeInfo *prev;
Int someField;

} SomeInfo;

For a sequenceof instance declaration, consider:

sequenceof SomeInfo someInfoSeq;

Which is equivalent to:

struct {
SomeInfo *first;
SomeInfo *last;

} someInfoSeq;

For a sequenceof type declaration, consider:

typedef sequenceof SomeInfo {
Int nuOfElems;

} SomeInfoSeq;
SomeInfoSeq someInfoSeq;

Which is equivalent to:

typedef struct {
SomeInfo *first;
SomeInfo *last;
Int nuOfElems;

} SomeInfoSeq;
SomeInfoSeq someInfoSeq;

Implementation of sets-of can be done as sequences-of. The user may convey the irrelevance of order through the
usage of:

set
setof

reserved word extensions.

3.5 Restrictions on Usage of Features in C
Open C Environment conforms to the ANSI C standard. At present, a large number of existing C compilers have not
implemented all the new features in ANSI C. New features of C, (function prototypes, structure assignment and new
reserved words) may be used only if backwards compatibility is maintained. This can often be accomplished through
conditional compilation.

Pre-processor identifier ANSIC is reserved for this purpose. Only environments that conform to the standard
should have it defined. The following example demonstrates the proper usage of the new features.

3.6. COMPILE TIME CONFIGURATION 33

#ifdef ANSIC
typedef void * Ptr;
#else
typedef unsigned char * Ptr;
#endif

#ifdef ANSIC
SuccFail N_sapCreate(Int sapSel);
#else
SuccFail N_sapCreate();
#endif

Structure assignment and use of structures as function arguments is also discouraged unless compatibility with
older compilers is maintained.

3.6 Compile Time Configuration
Environment specific facilities may be implemented in a variety of ways. To support more than one target environment
through the same source code, conditional compilation features are often used. Three basic elements of the operating
environment are recognized as:

• The operating system.

• The CPU type.

• The C compiler.

Conventional compile time identifiers that identify the operating environment are placed in a file called ”oe.h”.
When porting the Open C Platform ”oe.h” must be properly configured to reflect the target environment.

When developing on a PC-AT running XENIX, my oe.h is configured as:

#ifndef OE H /*{*/
#define OE H

/*
* CPU.
* Used for byte order representation of integers.
* Supported CPUs are:
* INTEL for 8086 family (8088, 80186, 80188, 80286)
* VAX for DEC VAX mini-computers.
* M68K for Motorola MC68000 family processors 10
* NS16 for National Semiconductor NS16000 series processors.
*/
#define INTEL

/*
* Operating System.
* Used for OS specific interprocess communication and

34 CHAPTER 3. CONVENTIONS

* other OS specific facilities.
* Supported Operating Systems are:
* SIMU No operating system at all. 20
* SYSV System V Unix release {2,3}.
* BSD Berkeley Unix release 4.{2,3}.
* MSDOS
* VMS
*/
#define SYSV

/*
* Compiler.
* Used to identify the compiler. 30
* This can be used to work around abnormalities of the C compiler.
* Supported Compilers are:
* KANDR Traditional compilers.
* ANSIC Standard conformant.
*/
#define ANSIC

#endif /*}*/

Figure 3.1: Operating Environment Configuration

3.7 Global Standard Definitions (estd)
All Open C Environment source modules include the global portable standard definitions definitions file estd.h. Doc-
umentation on estd.h is provided in appendix A. Basic portable data type definitions are defined in estd.h.

Chapter 4

COMMON FEATURES OF A LAYER

4.1 A Layer’s Interfaces

Each layer has a number of typical exposed interfaces. As an example let’s consider a sample software layer called
”Some Service Provider” (SSP). (SSP) is expected to provide some defined services to the layer above it (UPPER).
It can rely on the services offered by the layer below it (LOWER). The usual interfaces of the SSP layer are listed
below:

Initialization:
SSP_init()
SSP_term()

SAP Mangement Interface:
SSP_sapCreate()
SSP_sapDelete()

Upper Interface:
SSP_actionPrim(), ...
(*upperEventPrim)(), ...

Lower Interface:
LOWER_ActionPrim(), ...
ssp_lowerEventPrim(), ...

Layer Management Interface:
SSP_lmInit()
SSP_lmActionPrim(), ...
(*lmEventPrim)(), ...

Open C Platform Interface:
TM_, EH_, SCH_, DU_, TMR_, ...

35

36 CHAPTER 4. COMMON FEATURES OF A LAYER

Consistent with the naming conventions mentioned in the previous section, all exposed interfaces of this module are
prefixed by SSP . The indirect function invocation (*func)() notation is used to indicate the event primitive interaction
with other layers.

4.1.1 Initialization
Each layer can expect to be initialized before providing any services. During the initialization, the module can obtain
its required resources and become ready to provide its expected services. The entry point to initialize the SSP layer
is SSP init().

Each Open C Layer must have a mechanism to be terminated and re-initialized. After termination a layer is not
expected to maintain any history of what had happened prior to termination. The module must be re-initialized before
being used. During a reset the layer should release all the resources that it had previously obtained. The entry point to
terminate the SSP layer is SSP term().

All initialization functions should be idempotent, meaning multiple invocations of the initialization facility do
not result in an error. The following code fragment illustrates a conventional implementation of initialization and
termination facilities.

static Bool virgin = TRUE;

Void SSP_init()
{

if (virgin) {
virgin = FALSE; /* Only first time counts */
/*
* - Obtain necessary resources.
* - Provide your services.
*/

}
}

Void SSP_term()
{

virgin = TRUE; /* Can be re-initialized */
/*
* - Terminate your services.
* - Release resources.
*/

}

4.1.2 SAP Management
All service provider layers have a means to support multiple service users simultaneously. This is supported through
the concept of Service Access Points.

A service access point (SAP) is defined as the interface between a service user and a service provider. Each SAP
is identified by the service provider through a SAP address selector. Above the network layer SAP address selectors
are derived from SAP address suffixes.

4.2. USAGE OF RESOURCES 37

Each service user is expected to create a service access point before using any of the services of the provider.
Each layer has a function to create a SAP and a function to delete a SAP. Upon SAP creation, the service provider,
associates SAP address selector of a service user entity with the address of a number of function(s) within the service
user entity. These functions will be used by the service provider to handle indications and confirms (primitive events)
at the upper interface.

4.1.3 Upper Interface
Each Open C Layer is expected to provide its services at its upper interface. The set of action primitives provided by
the layer must be known by the service user. Entry points for events primitives must have been conveyed to the layer
during the creation of the service access point. The calling sequence for event primitive must be consistent with the
service user’s expectations.

4.1.4 Lower Interface
Open C Layers may rely on the services provided by the layers below them. The set of action primitives provided
by the layer below must be known. Entry points for event primitives are conveyed to the layer below during the SAP
creation.

4.1.5 Layer Management Interface
Each layer has a layer management entity (LME) responsible for administration of the layer. This subject is discussed
in more detail in chapter 4.

4.2 Usage of Resources
OSI resources such as SAPs and CEPs are often dynamically used. Creation, usage and deletion of these resources
often follow a common pattern. This common pattern is described in this section.

Usage of resources is often through a descriptor based scheme. Through a create operation a unique descriptor
referencing an instance of the resource is obtained. This descriptor is used as a reference to the resource in all future
transactions. Two basic variations on this scheme are described below. The one way resource usage model and the
two way resource usage model. The one way resource usage is typically more appropriate for interfaces that only
requires action primitives. The two way resource usage is typically more appropriate for interfaces that require action
and event primitives.

In the one way model, a resource typically has:

• An address.

• A provider reference.

FILE fopen(char *filename, char *permissions);

in stdio module is an example of the one way model for resource usage. fileName is the address of the resource and
FILE is the provider’s reference.

In the two way model, a resource typically has:

• An address.

38 CHAPTER 4. COMMON FEATURES OF A LAYER

• A user reference.

• A provider reference.

Let’s consider the case of a Connection End Point.

CepProvRef conReq(CepUserRef cepUserRef, DstAddr dstAddr, ...);
Void (*conCnf)(CepUserRef cepUserRef, ...);
Void dataReq(CepProvRef cepProvRef, ...);

conReq and dataReq are action primitives, conCnf is an event primitive. Prior to the creation of a CEP, the service
user prepares its private model of the CEP. During the creation of the CEP (conReq), a reference to this (cepUserRef)
is conveyed to the service provider module. The service provider module (conReq) in turn returns a provider reference.
All future action primitives dealing with the CEP will use the provider reference. All future event primitives dealing
with the CEP will use the user reference.

4.3 Integration of Layers
The layered architecture plus the consistent layer interface provides for ease of integration. Several communication
layer implementations can be integrated into a multi-layered communication software entity.

The Global module responsible for integration of the communication layers is expected to be called the ”G ”
module. A number of features are expected of the G module. These features are described in the next section.

The following basic structure is typical of the program that integrates one or more layers into a communication
system.

- Set the run time configuration parameters.
- Initialize the run time environment and

the communication layers.
- Wait for any significant event expected by any modules.
- Schedule the execution of the awakened module.

4.3.1 The G module
By convention the G module is responsible for integration of all other modules in the executable entity. By conven-
tion ”g.h” is designated to contain global configuration and integration information to be shared among independent
modules. G Env may be shared among all modules to convey global environment information.

The specific nature of G module and ”g.h” is specific to each target environment. The following figure illustrates
the usage of g.h for configuration and integration purposes.

/*
* SCCS Revision: %W% Released: %G%
*/

#ifndef G H /*{*/
#define G H

4.3. INTEGRATION OF LAYERS 39

#include "du.h"

typedef struct G Env { 10
Bool hardReset;
Bool softReset;

} G Env;

extern DU Pool *G mainDuPool;

#define K schQuLen 22 /* Number of Scheduler queue items */

#endif /*}*/

Figure 4.1: Example of g.h

Potential usages of the G module are demonstrated in other examples in this book.

40 CHAPTER 4. COMMON FEATURES OF A LAYER

Chapter 5

MODULE MANAGEMENT
ARCHITECTURE

The OSI Basic Reference Model introduces the concept of management within OSI, and identifies a category of
management activity described as Systems Management. It is recognized that OSI Management Framework is young.
Details of Management Information Services are presently not fully understood. However, it is within the scope of
this book to address the issue of management.

The Network Management implementation architecture outlined here is based on [?]. The concepts described
in [?] trickle down to the lower layers. Layer management facilities, should therefore be designed to support these
concepts. This sections deals with Common Management Information Services as they apply to the lower layers.

Following figure illustrates OCE’s view of Network Management Architecture.
Each layer has a Layer Management Entity (LME) which provides an interface for manipulating and monitoring

that layer’s performance. Each System has an entity that can access individual LME and perform Network Manage-
ment Functions. This entity will be called ”Layer Management Entity Interface” Common Management Information
Services Element (CMISE) is responsible for monitoring the system on behalf of a Network Management Adminis-
trator (NMA).

The Common Management Information Protocol (CMIP) provides request/response service between a CMISE in
one real open system and a CMISE in a second real open system which may be carrying out management activities
in that real open system on behalf of the CMISE in the first open system. The CMIP also provides an event reporting
service between an event reporting CMISE and an event monitoring CMISE.

5.1 Module Management (MM)

\#include "mm.h"

void
MM_init(char * pApplicationEntityInstanceName);

ReturnCode
MM_registerModule(char * pModuleName,

41

42 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

Network LME

Transport LME

Presentation

 Sesssion LME

SYSTEM’S
LME INTERFACE

 CMISE CMISE

 NMA

MANAGER SYSTEM AGENT SYSTEM

CMIP

 . .
 . .
 . .

CASE LME

Figure 5.1: Network Management Architecture

5.1. MODULE MANAGEMENT (MM) 43

void ** phModule);

ReturnCode
MM_registerManagableEntity(void * hModule,

MM_ManagableEntityType managableEntityType,
char * pManagableEntityName,
char * pIdentificationMessage,
OS_Uint16 initialNotifyMask,
void ** phManagableEntity);

ReturnCode
MM_setThreshold(void * hManagableEntity,

MM_ThresholdType thresholdType,
OS_Sint32 value);

ReturnCode
MM_incrementValue(void * hManagableEntity,

OS_Sint32 incrementBy);

ReturnCode
MM_startTimer(void * hManagableEntity,

OS_Uint32 milliseconds);

ReturnCode
MM_stopTimer(void * hManagableEntity);

ReturnCode
MM_logMessage(void * hManagableEntity,

char * pFormat,
...);

ReturnCode
MM_registerDestination(ReturnCode (* pfAlert)(char * pApplicationEntityInstanceName,

char * pModuleName,
char * pIdentificationMessage,
MM_EventType eventType,
...),

OS_Uint16 initialNotifyMask,
void ** phDestination);

ReturnCode
MM_modifyDestination(void * hDestination,

OS_Uint16 newNotifyMask);

ReturnCode
MM_processEvents(OS_Boolean * pbFoundOne);

44 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

ReturnCode
MM_getValueByHandle(void * hManagableEntity,

void * pValue);
ReturnCode
MM_getValueByName(char * pModuleName,

char * pManagableEntityName,
void * pValue);

ReturnCode
MM_setValueByHandle(void * hManagableEntity,

void * pValue);

ReturnCode
MM_setValueByName(char * pModuleName,

char * pManagableEntityName,
void * pValue);

Note that there are no ”modify”, ”delete”, or ”create” operations. Creation must occur at the Module Management
Entity level. Deletion can be accomplished by setting the Notification Mask to zero. Modify is accomplished via the
”set” operation.

The Module Management Module uses the following data types:

typedef enum MM_ManagableEntityType
{

MM_ManagableEntityType_CounterSigned, /* Value Type: OS_Sint32 */
MM_ManagableEntityType_CounterUnsigned, /* Value Type: OS_Uint32 */
MM_ManagableEntityType_GuageSigned, /* Value Type: OS_Sint32 */
MM_ManagableEntityType_GuageUnsigned, /* Value Type: OS_Uint32 */
MM_ManagableEntityType_String, /* Value Type: STR_String */
MM_ManagableEntityType_Timer, /* No maintained value */
MM_ManagableEntityType_Log /* No maintained value */

} MM_ManagableEntityType;

These are the currently supported types of entities which we can manage.

typedef enum MM_NotificationType
{

/* Counter events */
MM_NotificationType_HighPriCounter = (1 << 13)
MM_NotificationType_MidPriCounter = (1 << 7)
MM_NotificationType_LowPriCounter = (1 << 1)

/* Event requires immediate notification */
MM_NotificationType_Urgent = (1 << 15)

5.1. MODULE MANAGEMENT (MM) 45

/* Event is only informational and may not require any action */
MM_NotificationType_Info = (1 << 0)

/* Generic values for all possible bits */
MM_NotificationType_15 = (1 << 15) /* also Urgent */
MM_NotificationType_14 = (1 << 14)
MM_NotificationType_13 = (1 << 13) /* also HighPriCounter */
MM_NotificationType_12 = (1 << 12)
MM_NotificationType_11 = (1 << 11)
MM_NotificationType_10 = (1 << 10)
MM_NotificationType_9 = (1 << 9)
MM_NotificationType_8 = (1 << 8)
MM_NotificationType_7 = (1 << 7) /* also MidPriCounter */
MM_NotificationType_6 = (1 << 6)
MM_NotificationType_5 = (1 << 5)
MM_NotificationType_4 = (1 << 4)
MM_NotificationType_3 = (1 << 3)
MM_NotificationType_2 = (1 << 2)
MM_NotificationType_1 = (1 << 1) /* also LowPriCounter */
MM_NotificationType_0 = (1 << 0) /* also Info */

} MM_NotificationType;

Each managable entity may be assigned one or more notification types which are to be generated when an event
on that managable entity is raised. The module itself may specify an initial set of notification types for the managable
entity, but the manager entity may modify that set.

A general rule to follow in deciding what notification type to use, is that the higher-order bits should indicate more
urgent events while lower-order bits should indicate less urgent events.

NOTE: The maximum number of bits allowed here is 16, as enum types are 16-bits when using some compilers.

typedef enum MM_EventType
{

MM_EventType_MaxThresholdExceededSigned,
/*
* Parameters passed to the Alert function when an event of this
* type is raised:
*
* Two optional parameters are passed:
*
* - the threshold value, as an "OS_Sint32"
* - the value which caused the event by exceeding the
* threshold, as an "OS_Sint32"
*
*/

MM_EventType_MaxThresholdExceededUnsigned,
/*

46 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

* Parameters passed to the Alert function when an event of this
* type is raised:
*
* Two optional parameters are passed:
*
* - the threshold value, as an "OS_Uint32"
* - the value which caused the event by exceeding the
* threshold, as an "OS_Uint32"
*
*/

MM_EventType_MinThresholdExceededSigned,
/*
* Parameters passed to the Alert function when an event of this
* type is raised:
*
* Two optional parameters are passed:
*
* - the threshold value, as an "OS_Sint32"
* - the value which caused the event by exceeding the
* threshold, as an "OS_Sint32"
*
*/

MM_EventType_MinThresholdExceededUnsigned,
/*
* Parameters passed to the Alert function when an event of this
* type is raised:
*
* Two optional parameters are passed:
*
* - the threshold value, as an "OS_Uint32"
* - the value which caused the event by exceeding the
* threshold, as an "OS_Uint32"
*
*/

MM_EventType_TimerExpired,
/*
* Parameters passed to the Alert function when an event of this
* type is raised:
*
* No optional parameters are passed.
*/

MM_EventType_LogMessage

5.1. MODULE MANAGEMENT (MM) 47

/*
* Parameters passed to the Alert function when an event of this
* type is raised:
*
* One optional parameter is passed:
*
* - the log message string, as a "char *"
*/

} MM_EventType;

This is the current set of events which may be generated by a module’s management entity.
IMPORTANT NOTE:
If additional event types are added, be sure to add comments specifying what optional parameters are passed to the

Alert function (see MM registerDestination()) when an event of this type is raised.

5.1.1 Module Management Initialization
This function is to be called by all applications making use of any of the Module Management facilities.

void
MM_init(char * pApplicationEntityInstanceName);

Initialize the Module Management Entity module.

Parameters:

pApplicationEntityInstanceName --
The name of the application entity instance in which the module
is located. Note that if the same application is running in
more then one instance, the instance name must be unique in
each one.

5.1.2 Module Management Entity (MME) facilities
These functions are to be called by each module which wishes to use module management facilities.

Register Module

ReturnCode
MM_registerModule(char * pModuleName,

void ** phModule);

Allocate management resources for a code module or protocol layer.

Parameters:

pModuleName --

48 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

The name of the module for which managable entities are to be
registered.

phModule --
Pointer to a handle. The handle is generated by this function.
Future requests to register a managable entity will use this
handle.

ReturnCode
MM_registerManagableEntity(void * hModule,

MM_ManagableEntityType managableEntityType,
char * pManagableEntityName,
char * pIdentificationMessage,
OS_Uint16 initialNotifyMask,
void ** phManagableEntity);

Register a managable entity for use by the specified module.

Parameters:

hModule --
A module handle previously returned by MM_registerModule().

managableEntityType --
The type of managable entity being registered.

pManagableEntityName --
The name of the managable entity being registered. This name must be
unique within the scope of this module.

pIdentificationMessage --
An identification string which will be passed to the module management
agent when an event is raised.

initialNotifyMask --
Bits identifying the urgency of an event rasied for this managable
entity. Multiple bits may be specified, but this use is discouraged.

phManagableEntity --
Pointer to a handle. The handle is generated by this function. Future
requests to set thresholds, modify values, etc. will require use of
this handle.

subsubsectionSet Threshold

ReturnCode
MM_setThreshold(void * hManagableEntity,

5.1. MODULE MANAGEMENT (MM) 49

MM_ThresholdType thresholdType,
OS_Sint32 value);

Set the maximum or minimum threshold value for a managable entity.

Parameters:

hManagableEntity --
Handle to a managable entity, previously returned by
MM_registerManagableEntity().

thresholdType --
Indication of whether the threshold to be set is a Maximum threshold or
a Minimum threshold.

value --
Value to which the threshold should be set.

Note:
Thresholds are only applicable to certain managable entity types, such as
Counters and Guages.

Increment Value

ReturnCode
MM_incrementValue(void * hManagableEntity,

OS_Sint32 incrementBy);

Increment the numeric value of the specified managable entity (probably either a counter or a guage) by the
specified value.

Parameters:

hManagableEntity --
Handle to a managable entity, previously returned by
MM_registerManagableEntity().

incrementBy --
Amount by which the managable entity’s value should be incremented.
The increment value may be negative to decrement the value.

Timer

ReturnCode
MM_startTimer(void * hManagableEntity,

OS_Uint32 milliseconds);

Start a timer. When it expires, an event will be raised.

50 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

Parameters:

hManagableEntity --
Handle to a managable entity, previously returned by
MM_registerManagableEntity().

milliseconds --
Number of milliseconds before the timer should expire.

ReturnCode
MM_stopTimer(void * hManagableEntity);

Stop a previously started timer.

Parameters:

hManagableEntity --
Handle to a managable entity, previously returned by
MM_registerManagableEntity().

Logging Message

ReturnCode
MM_logMessage(void * hManagableEntity,

char * pFormat,
...);

Generate a message for logging, using a printf-style format.

Parameters:

hManagableEntity --
Handle to a managable entity, previously returned by
MM_registerManagableEntity().

pFormat --
Printf-style format string specifying the format for the remainder of
the parameters.

... --
Additional parameters, as specified by pFormat.

5.1.3 Module Management Agent facilities

Each MMA talks to multiple Module Management Entities (MME’s).

5.1. MODULE MANAGEMENT (MM) 51

ReturnCode
MM_registerDestination(ReturnCode (* pfAlert)(char * pApplicationEntityInstanceName,

char * pModuleName,
char * pIdentificationMessage,
MM_EventType eventType,
...),

OS_Uint16 initialNotifyMask,
void ** phDestination);

Register a new destination to which events may be sent. A destination is a place where an event is sent. All
Module Management Agents should register at least one destination – the Module Management Manager. Additional
destinations may be registered, such as to a log file, to send email, etc.

Parameters:

pfAlert --
Pointer to a function which will be called when events are
destined to this registered destination.

If "pfAlert" is NULL, a default function is used, which sends events
for this destination to a non-standard-based Module Management Manager,
using a non-standard-based data format.

When the function pointed to by this parameter is ultimately
called, it will be passed a set of zero or more optional
parameters which are specific to the type of event which has
been raised. See the comments associated with the definition
of MM_EventType.

initialNotifyMask --
Bits specifying that events of notification types include in this mask
are to be sent to this destination (in addition, possibly, to other
destinations).

phDestination
Pointer to a handle. The handle is generated by this function. Future
requests to modify the notification mask for this destination will
require use of this handle.

ReturnCode
MM_modifyDestination(void * hDestination,

OS_Uint16 newNotifyMask);

Modify the set of notification types which should be sent to this destination.

Parameters:

52 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

hDestination --
Handle, previously provided by MM_registerDestination().

newNotifyMask --
New bit mask indicating which notification levels are to be sent to
this destination.

Process Events

ReturnCode
MM_processEvents(OS_Boolean * pbFoundOne);

Event notification does not happen asynchronously. The reason for this is that the event could be raised during
interrupt routines, critical sections, etc. We therefore enqueue the event notification for action when this function is
called.

This function should be called on a regular basis, either in a main loop, or via a timer expiration.

Parameters:

pbFoundOne --
Pointer to a boolean variable, which is set to TRUE by this function if
an event was found to process. This variable is _not_ modified if no
event was found to process, enabling a pointer to the same variable to
be passed to multiple functions to see if any of them had anything to
do.

This pointer may be NULL if an indication of whether an event was
processed is not required.

Get Current Value

ReturnCode
MM_getValueByHandle(void * hManagableEntity,

void * pValue);

Get the current value of a managable entity.

Parameters:

hManagableEntity --
Handle to a managable entity, previously provided by
MM_registerManagableEntity().

pValue --
Pointer to the location where the current value of the specified
managable entity is to be placed. It is up to the caller to provide a

5.1. MODULE MANAGEMENT (MM) 53

pointer to the correct type of variable into which the value will be
placed.

ReturnCode
MM_getValueByName(char * pModuleName,

char * pManagableEntityName,
void * pValue);

Get the current value of a managable entity.

Parameters:

pModuleName --
Name of the module in which the manangable entity resides.

pManagableEntityName --
Name of the managable entity for which the value is desired.

pValue --
Pointer to the location where the current value of the specified
managable entity is to be placed. It is up to the caller to provide a
pointer to the correct type of variable into which the value will be
placed.

Set Current Value

ReturnCode
MM_setValueByHandle(void * hManagableEntity,

void * pValue);

Set the current value of a managable entity.

Parameters:

hManagableEntity --
Handle to a managable entity, previously provided by
MM_registerManagableEntity(), for which the value is to be
modified.

pValue --
Pointer to the new value for this managable entity. It is up
to the caller to provide a pointer to the correct type of
variable into which the value will be placed.

ReturnCode
MM_setValueByName(char * pModuleName,

char * pManagableEntityName,
void * pValue);

54 CHAPTER 5. MODULE MANAGEMENT ARCHITECTURE

Get the current value of a managable entity.

Parameters:

pModuleName --
Name of the module in which the manangable entity resides.

pManagableEntityName --
Name of the managable entity for which the value is to be
modified.

pValue --
Pointer to the new value for this managable entity. It is up
to the caller to provide a pointer to the correct type of
variable into which the value will be placed.

5.2 Layer Management Entity Interface
Each LME should define the complete set of management information types and facilities that it supports. Mechanism
for access to LME of each layer is same as the layer’s other interfaces – Direct non-blocking function calls with a well
defined set of arguments.

Chapter 6

OPEN C PLATFORM

Open C Platform is a set of well defined interfaces and service definitions for basic facilities needed for implementation
of lower layer OSI protocols in C.

Platform facilities are grouped into sets of related facilities. Module naming conventions, mentioned earlier is used
to highlight this grouping. A list of these common facilities is provided in the following table:

Module Facility Environment
Name Description Dependencies

SF_ System Facilities Yes
SCH_ Scheduling Yes

BO_ Byte Ordering Yes
BS_ Byte String Manipulation Can be

QU_ Linked List Management No
SEQ_ QU_ extensions SF_

EH_ Exception Handling Yes

TM_ Tracing Yes

DU_ Data Unit manipulation SF_

TMR_ Timer Management Yes

SAP_ SAP Address Management No

RELID_ Release Identifier

LIC_ License Checking

55

56 CHAPTER 6. OPEN C PLATFORM

EH and TM provide exception handling, event logging and tracing facilities. This type of basic facilities are
required by any type of serious software development.

SF (System Facilities) module defines an interface for a number of inherently non portable facilities. Implemen-
tation of many of the facilities defined here can be made portable by relying on SF facilities.

SCH (Scheduling) module provides for efficient usage of the CPU in multi-processing environments.
BO provides for simple CPU independent value representation. BS defines an interface for manipulation of

blocks of data.

6.1 OCP Interfaces

6.2 Environment Specific Facilities (SF)

#include "sf.h"

Ptr SF_memObtain(Uns nuOfBytes);
SuccFail SF_memRelease(Ptr data);

SF_Status SF_critBegin();
Void SF_critEnd(SF_Status status);

Int SF_quInsert(QU_Head *head, QU_Elem *elem);
Int SF_quRemove(QU_Head *head, Ptr *elem);

A set of inherently environment dependent services are expected of the operating environment. Environment indepen-
dent services and interfaces defined in Open C Platform can be implemented by relying on the primitive environment
specific facilities available in each environment.

Ability to Obtain memory from the environment, a periodic interrupt and protection against preemption are among
the few environment specific facilities that are assumed by Open C Platform. Other environment specific facilities such
as atomic queue operations, and timer facilities may be available in some environments. When available these facilities
may be used for efficient implementation of Open C Platform. Facilities described in this section are considered to be
low level. Their direct usage by the application is not recommended.

6.2.1 Obtaining Memory
During the initialization each module may reserve some memory for its usage and upon a soft reset each module
may return the memory back to the environment. The lower layers should not assume the existence of a dynamic
memory allocation facility such as malloc. All the memory that required by a module is expected be reserved upon
initialization.

Ptr SF_memObtain(Uns nuOfBytes);
SuccFail SF_memRelease(Ptr data);

Provide a model for such environment specific facilities.

6.2. ENVIRONMENT SPECIFIC FACILITIES (SF) 57

6.2.2 Synchronization
Asynchronous intercations with synchronous processing can result into inconsistencies. To prevent this the availability
of a simple preemption protection mechanism is assumed. When the synchronous software is accessing a critical
resource, it protects itself against preemption and once the critical section is completed preemption status is restored.

SF_Status SF_critBegin();
Void SF_critEnd(SF_Status status);

Provide a model for this service. Enabling and disabling interrupts is an extreme way of implementing this facilities
in un-hosted environments.

6.2.3 Atomic Queue Operations
Most modern CPUs include support for atomic queue (circular doubly linked list) operations. When available this
facility may be exploited for coordination of synchronous and asynchronous interactions.

Int SF_quInsert(QU_Head *head, QU_Elem *elem);
Int SF_quRemove(QU_Head *head, QU_Elem **elem);

Provide a model for this service. The QU module describes the characteristics of circular doubly linked lists. QU
facilities are not protected against asynchronous preemption and should not be used when asynchronous preemption
can result into inconsistencies. SF quInsert and SF quRemove are expected to be atomic (non-preemptable during the
entire operation).

SF quInsert inserts elem at the tail of head. elem need not be initialized. If head was empty, -1 is returned.
Otherwise 0 is returned.

SF quRemove removes the first element of the queue from the head if there is one. If head was not empty *elem
is a pointer to the removed element. The removed element will not be initialized at the completion of SF quRemove.
If head was empty, SF quRemove returns -1 and *elem is untouched. Otherwise 0 is returned.

An example implementation of SCH module based on SF qu facilities is illustrated in the following code frag-
ment.

#ifdef SCCS VER /*{*/
static char sccs[] = "%W% Released: %G%";
#endif /*}*/

#include "estd.h"
#include "sf.h"
#include "eh.h"

/*
* Scheduler Information. 10
*/

typedef struct SchInfo {
struct SchInfo *next;
struct SchInfo *prev;
Int (*func)(); /* Function to Call */
Ptr arg;

} SchInfo;

58 CHAPTER 6. OPEN C PLATFORM

typedef struct SchInfoSeq {
SchInfo *first; 20
SchInfo *last;

} SchInfoSeq;

STATIC SchInfoSeq availSchInfo;
STATIC SchInfoSeq activeSchInfo;

STATIC SchInfo *schInfoBuf;
STATIC SchInfo *schInfoBufEnd;

30
Void SCH init(maxSchInfo)
Int maxSchInfo;
{

SchInfo *schInfo;

/*
* Create a Pool
*/

schInfoBuf = (SchInfo *)
SF memObtain(maxSchInfo * sizeof(*schInfoBuf)); 40

if (!schInfoBuf) {
EH fatal("SF_memObtain");

}
schInfoBufEnd = &schInfoBuf[maxSchInfo −1];
QU init(&availSchInfo);
QU init(&activeSchInfo);
for (schInfo = schInfoBuf; schInfo <= schInfoBufEnd; ++schInfo){

SF quInsert(&availSchInfo, schInfo);
}

} 50

Void SCH term()
{

SF memRelease(schInfoBuf);
}

Void SCH submit(func, arg)
Int (*func)();
Ptr arg;
{ 60

SchInfo *schInfo;
Int status;

/*
* Queue Up the function and argument for synchronus processing.
* Notice The Qu insertion must be protected.
*/

if ((status = SF quRemove(&availSchInfo, &schInfo)) != 0) {
EH fatal("No SchInfo");
return ; 70

}

schInfo−>func = func;
schInfo−>arg = arg;

6.2. ENVIRONMENT SPECIFIC FACILITIES (SF) 59

if (SF quInsert(&activeSchInfo, schInfo)) {
/* PORTATION SPECIFIC
* Use environment specific facilities to wake up.
*/
sys$wake(0, 0); 80

}
}

Void SCH block()
{

/*
* Should map into environment specific facilities
* that puts this process into sleep.
*/

if (activeSchInfo.first == &activeSchInfo) { 90
/* PORTATION SPECIFIC
* Use Environment Specific facilities to Block
*/

sys$hiber();
}

}

Void SCH run()
{

SchInfo *schInfo; 100
Int status;

while (SF quRemove(&activeSchInfo, &schInfo) == 0) {
(*schInfo−>func)(schInfo−>arg);
SF quInsert(&availSchInfo, schInfo);

}
}

Figure 6.1: SF Example Source Code

In this example it is assumed that environment specific facilities for scheduling are provided through syshiber and
syswake.

6.2.4 Scheduling
In multi-processing hosted environments, it is desirable to share the CPU with other processes. In these environments
the availability of facilities for blocking and waking up are assumed. When available these facilities may be used in
the implementation of SCH facilities.

SCH section defines the scheduling facility to be used by Open C Platform users.

6.2.5 Timer Facilities
Environment specific timer facilities are expected to be enhanced to conform to TMR facilities described later in this
chapter. In un-hosted environments the only expected timer facility from the environment is a periodic interrupt.

60 CHAPTER 6. OPEN C PLATFORM

6.3 Execution Scheduler (SCH)

#include "sch.h"

Void SCH_init(Int nuOfSchQuItems);
Void SCH_reset();

Void SCH_submit(func, arg)
Int (*func)();
Ptr arg;

Void SCH_block();
Void SCH_run();

In environments where multi processing is supported, it may be desirable to time share the CPU with other pro-
cesses. In this scenario when the communication software has no more work to do it can block and deliver CPU to
other processes.

SCH module can be used for rescheduling of known modules. One of the common usages of SCH module
rescheduling of further processing with in the same module. This happens most often to prevent re-entry to non-re-
entrant code.

Take the case of an (N-1) Action Primitive resulting into an (N-1) Event Primitive. If (N) layer code is non-re-
entrant, this should not happen. The expected behavior of (N-1) module is:

• Detect that an Action Primitive is resulting into an Event Primitive.

• Store the information required for the future issuance of the Event Primitive.

• Request re-scheduling of this layer.

• Complete the Action Primitive, and return.

The following example illustrates an example of such a sequence.

#ifdef SCCS VER /*{*/
static char sccs[] = "%W% Released: %G%";
#endif /*}*/

#include <stdio.h>
#include "estd.h"
#include "tm.h"
#include "getopt.h"
#include "g.h"

10
Void SSP init(), SSP sapCreate(), SSP actionPrim();
Void USER init();

PUBLIC G Env G env;

6.3. EXECUTION SCHEDULER (SCH) 61

main(argc, argv)
Int argc;
String argv[];
{

Int c; 20

TM init();

while ((c = getopt(argc, argv, "T:t:")) != EOF) {
switch (c) {
case ’T’:
case ’t’:

TM setUp(optarg);
break;

case ’?’: 30
default:

G exit(1);
}

}

G env.hardReset = FALSE;
G env.softReset = FALSE;

while (!G env.hardReset) {
SCH init(K schQuLen); 40
SSP init();
USER init();
TM validate();

while (!G env.softReset) {
SCH block();
SCH run();

}

SCH term(); 50
}

G exit(1);
}

G exit(code)
Int code;
{

exit(code);
} 60

/*
* USER module.
*/

Void userEventPrim()
{

printf("SSP Event Primitive, invoked by the scheduler\n");
G env.softReset = TRUE;
G env.hardReset = TRUE; 70

}

62 CHAPTER 6. OPEN C PLATFORM

Void USER init()
{

SSP sapCreate(userEventPrim);
SSP actionPrim();

}

/*
* Some Service Provider (SSP) Module. 80
*/

static Void (*sapEventPrim)();

Void SSP init()
{

/* Initialization could have been done here */
}

Void SSP sapCreate(eventPrim)
Void (*eventPrim)(); 90
{

sapEventPrim = eventPrim;
}

Void SSP actionPrim()
{

/* Let’s say this action primitive was to result
* into an event primitive, but since we can not rely
* on the user context being re-enterant.
* The event primitive is scheduled for exection 100
* outside the user’s context.
*/

printf("SSP Action Primitive, invoked by USER\n");
SCH submit(sapEventPrim, (Ptr)0);

}

Figure 6.2: SCH Example Source Code

6.4 Byte Ordering (BO)

#include "bo.h"

Void BO_put1(netPtr, cpuValue)
Octet *netPtr; /* OUT */
Byte cpuValue;

Void BO_get1(cpuValue, netPtr) /* MACRO */
Octet *netPtr;
Byte cpuValue; /* OUT, VALUE EFFECTED */

6.5. BYTE STRING (BS): 63

BO_put2(netPtr, cpuValue)
Octet *netPtr; /* OUT */
MdUns cpuValue;

BO_get2(cpuValue, netPtr) /* MACRO */
Octet *netPtr;
MdUns cpuValue; /* OUT, VALUE EFFECTED */

BO_put4(netPtr, cpuValue)
Octet *netPtr; /* OUT */
LgUns cpuValue;

BO_get4(cpuValue, netPtr) /* MACRO */
Octet *netPtr;
LgUns cpuValue; /* OUT, VALUE EFFECTED */

BO_putN(netPtr, cpuPtr, n)
Octet *netPtr; /* OUT */
Byte *cpuPtr;
Int n;

BO_getN(cpuValue, netPtr, n)
Octet *netPtr;
Byte *cpuPtr; /* OUT */
Int n;

BO facilities provide primitive abstract data presentation facilities for simple types of values.
BO facilities convert CPU presentation of values to a machine independent byte ordering and vice versa. 8 bit

values, 16 bit values, 32 bit values, and octet string types are converted to an abstract presentation commonly used by
the lower layer protocols. This abstract presentation is expressed through a sequence of octets. Octets at the lower
address always contain the most significant byte of the value. Least Significant Byte of the value is always at the
higher address.

netPtr points to where the machine independent presentation value should be stored. Upon completion of all BO
facilities netPtr is incremented by the appropriate value so that it can be used in subsequent BO operations. cpuValue
is the machine dependent presentation of a value.

Get and Put verbs in BO get/BO put are with respect to the abstract presentation (the network). BO get always
converts the abstract presentation of contents of netPtr into a machine dependent value (cpuValue). Note that since
cpuValue is an out put value and is not passed as a pointer BO get facility must be implemented as a MACRO.
BO put always converts the machine dependent presentation of a value into an abstract presentation. netPtr is always
incremented.

6.5 Byte String (BS):

64 CHAPTER 6. OPEN C PLATFORM

#include "bs.h"

BS_memCopy(src, dst, nuOfBytes)
Byte *src;
Byte *dst;
Int nuOfBytes;

BS_memCmp(src, dst, nuOfBytes)
Byte *src;
Byte *dst;
Int nuOfBytes;

BS_memFill(dst, value, nuOfBytes)
Byte *dst;
Byte value;
Int nuOfBytes;

A Byte String (BS) is a consecutive memory address range. A byte string is specified by its starting address and its
length. BS module operates on byte strings.

BS memCopy copies nuOfBytes from string src to dst. src and dst are assumed to be non over lapping.
BS memCmp compares byte string src against dst .
Byte string operations are often one of the most execution intensive parts of a protocol implementation. Environ-

ment specific facilities provided in the target environment can sometimes be used to implement these facilities more
efficiently that they can be done as portable code.

6.6 Queue Module (QU)
#include "queue.h"

typedef struct QU_Elem {
Ptr next;
Ptr prev;

} QU_Elem;

typedef struct QU_Head {
Ptr first;
Ptr last;

} QU_Head;

QU_init(QU_Elem *q);

QU_insert(QU_Elem *q1, QU_Elem *q2);

QU_remove(QU_Elem *q);

6.6. QUEUE MODULE (QU) 65

QU_move(QU_Elem *q1, QU_Elem *q2);

QU_HEAD

QU_ELEMENT

QU_INIT(p)

QU_INSERT(pInsertThisElement, pInFrontOfThisElement)

QU_PREPEND(pInsertThisElement, pAtBeginOfThisQueue)

QU_APPEND(pInsertThisElement, pAtEndOfThisQueue)

QU_REMOVE(p)

QU_MOVE(pMoveMe, pBeforeThisElement)

QU_FIRST(p)

QU_LAST(p)

QU_NEXT(p)

QU_PREV(p)

QU_EQUAL(p1, p2)

QU facilities provide a uniform mechanism for manipulation of doubly linked circular lists. A queue is a circular
doubly linked list. Queues are often used for implementation of sequences and sets. A queue entry is linked to the
next by a pair of pointers. The first pointer (next) is the forward link. It specifies the location of the succeeding entry.
The second pointer (prev) is the backward link, it specifies the location of the preceding entry.

A queue is specified by a queue header (QU Head). Structure of queue header is same as queue element (two
pointers). The forward link of the header (first) is called head of the queue. The backward link of the header (last) is
called the tail of the queue.

IMPORTANT NOTE 1:

Make no assumptions about the structure of this type. It may change in the future. All manipulation of queue
elements must be accomplished solely by the functions in this queue module.

(As an example, if this code is ever moved into a multi-threading environment, some elements may be added to
the header, for mutual exclusion while manipulating the queue pointers.)

IMPORTANT NOTE 2:

66 CHAPTER 6. OPEN C PLATFORM

Do not declare queue pointers in your own structures. Instead, declare the first element of your structures as either
QU ELEMENT or QU HEAD. No variable name is necessary.

Two basic operations can be performed on queues: insertion of entries and removal of entries.
QU facilities are not protected against asynchronous preemption and should not be used when asynchronous

preemption can result into inconsistencies. SF quInsert and SF quRemove are expected to be atomic (non-preemptable
during the entire operation).

QU init, QU insert, QU remove and QU move all operate on an abstract data type ”QU Elem”. Objects that queue
management facilities manipulate are expected to be data types that allow for a QU Elem to be casted over them.

QU init initializes a QU Elem so that it can be used in subsequent operations. A QU Elem is initialized by having
its ”next” and ”prev” field point to itself. An initialized QU Elem is an empty circular list.

QU insert(q1, q2) inserts linked list q1 before list q2. The result is a linked list that contains all members of q1
and q2.

It is interesting to note that the order of arguments is not important. The result of QU insert(q1, q2) and QU insert(q2,
q1) is the same. Figure 6.3 illustrates this.

The facility QU remove removes QU Elem q from the list to which it belonged. QU Elem q is initialized upon
completion of QU remove.

QU move moves QU Elem q1 to end of q2. This is equivalent to the commonly used coding sequence:

QU_remove(q1);
QU_insert(q2, q1);

6.6.1 QU Macros
QU also provides the following set of macros to simplify coding.

• Use one of these as the first element within a structure which is to be a queue head or queue element.

QU_HEAD
QU_ELEMENT

• Use this macro to statically initialize a queue head.

QU_INITIALIZE(q)

• These macros may be used to initialize, insert, and remove queue elements. By using these macros, rather then
direct calls to the functions, you assure future compatibility.

QU_INIT(p)
QU_INSERT(pInsertThisElement, pInFrontOfThisElement)
QU_PREPEND(pInsertThisElement, pAtBeginOfThisQueue)
QU_APPEND(pInsertThisElement, pAtEndOfThisQueue)
QU_REMOVE(p)
QU_MOVE(pMoveMe, pBeforeThisElement)

• Use these macros to find the first or last element on a queue.

QU_FIRST(p)
QU_LAST(p)

6.6. QUEUE MODULE (QU) 67

f1 m1 l1

f2 l2

q1 = &f1 l1.next = &f1;

f1.prev = &l1;

q2 = &f2
l2.next = &f2;

f2.prev = &l2;

f2 l2

f1 m1 l1

QU_insert(q1,q2)

f2 l2f1 m1 l1QU_insert(q2,q1)

l1.next = &f2;

f2.prev = &l1;

l2.next = &f1;

f1.prev = &l2;

Figure 6.3: Queue Insertion

68 CHAPTER 6. OPEN C PLATFORM

• Use these macros to find the next or previous element on a queue.

QU_NEXT(p)
QU_PREV(p)

• Use this macro to determine if two queue elements are equal. The following code may be used to iterate through
a queue:

QU_EQUAL(p1, p2)

for (pElement = QU_FIRST(pHead);
! QU_EQUAL(pElement, pHead);
pElement = QU_NEXT(pElement))

{
...

}

• If you want to free all elements on a queue, and each element was allocated with OS alloc() and no element
contains pointers to other dynamically allocated memory, you can use this function. Just pass it a pointer to the
queue head.

QU_FREE(pQHead){

6.7 Sequence Module (SEQ)
#include "seq.h"

SEQ_PoolDesc SEQ_poolCreate(Int sizeOfElem, Int nuOfElems);
Void SEQ_poolFree(SEQ_PoolDesc pool);

Ptr SEQ_elemObtain(SEQ_PoolDesc pool);
Void SEQ_elemRelease(SEQ_PoolDesc pool, Ptr elem);

SEQ module provides simple fixed size dynamic memory allocation capabilities for linked list elements. In
conjunction with the QU module, sequences and sets implemented as linked lists can conveniently be maintained.

Memory for a number of elements within a sequence can initially be obtained through SEQ poolCreate facility.
As new elements of a set or a sequence are needed they can be obtained through SEQ elemObtain facility. Sequence
or set elements can be released back into the pool through the SEQ elemRelease facility.

6.7.1 Example Usage
The following code fragment demonstrate the use of Queue management facilities.

6.7. SEQUENCE MODULE (SEQ) 69

#ifdef SCCS VER /*{*/
static char sccs[] = "%W% Released: %G%";
#endif /*}*/

#include <stdio.h>
#include "estd.h"
#include "queue.h"
#include "seq.h"

typedef struct SomeInfo { 10
struct SomeInfo *next;
struct SomeInfo *prev;

#define DATASIZE 16 /* No Special Significance */
Char data[DATASIZE];
Int len;

} SomeInfo;

typedef struct SomeInfoSeq {
SomeInfo *first;
SomeInfo *last; 20

} SomeInfoSeq;

SEQ PoolDesc someInfoPool;
SomeInfoSeq someInfoSeq;

Void seqInsert(), seqProcess(), process();
main()
{

static Char *someData = "Some Data";
30

#define POOLSIZE 22 /* 22 is one of my favorite numbers */
someInfoPool = SEQ poolCreate(sizeof(*someInfoSeq.first),

POOLSIZE);
QU init(&someInfoSeq);

seqInsert(someData, strlen(someData)+1);
seqProcess();

}

/* 40
* Insert An Element into someInfoSeq
*/

Void seqInsert(data, len)
Char *data;
Int len;
{

SomeInfo *someInfo;

someInfo = (SomeInfo *) SEQ elemObtain(someInfoPool);
BS memCopy(data, someInfo−>data, len); 50
someInfo−>len = len;
QU insert(&someInfoSeq, someInfo);

}

Void seqProcess()
{

SomeInfo *someInfo;

70 CHAPTER 6. OPEN C PLATFORM

Char *p;

while ((someInfo = someInfoSeq.first) != 60

(SomeInfo *) &someInfoSeq) {
QU remove(someInfo);
process(&someInfo−>data[0], someInfo−>len);
SEQ elemRelease(someInfoPool, someInfo);

}
}

Void process(data, len)
Char *data;
Int len; 70

{
printf("Processing %s\n", data);

}

Figure 6.4: QU and SEQ Example Usage Source Code

This example does not perform any useful task but demonstrates how the Queue manipulation facilities can be
used to transfer some data through a queue. Flow of this example program is:

/* Call Graph */

6.8 Non-Volatile Queue (NVQ)

6.8.1 NVQ ReturnCode

enum NVQ_ReturnCode
{

NVQ_RC_CreateFailed = (1 | ModId_Nvq),
NVQ_RC_OpenFailed = (2 | ModId_Nvq),
NVQ_RC_WriteError = (3 | ModId_Nvq),
NVQ_RC_ReadError = (4 | ModId_Nvq),
NVQ_RC_Overflow = (5 | ModId_Nvq),
NVQ_RC_NonExistantElement = (6 | ModId_Nvq),
NVQ_RC_DataSizeTooLarge = (7 | ModId_Nvq),

};

typedef int NVQ_Element;

#define NVQ_NO_ELEMENTS ((NVQ_Element) -1)

6.8. NON-VOLATILE QUEUE (NVQ) 71

6.8.2 NVQ create
ReturnCode
NVQ_create(char * pQueueName,

OS_Uint16 maxNumElements,
OS_Uint32 maxElementSize,
void ** phQueue);

Create a Non-Volatile Queue.

Parameters:

pQueueName --
Identifier, or name for this queue.

maxNumElements --
Maximum number of elements that may be on this queue (ever).

maxElementSize --
Maximum number of octets of data in any one element.

phQueue --
Pointer to a location in which a handle to this queue is placed, upon
successful completion of this function.

6.8.3 NVQ open
ReturnCode
NVQ_open(char * pQueueName,

OS_Uint16 * pMaxNumElements,
OS_Uint32 * pMaxElementSize,
void ** phQueue);

Open an already-existant Non-Volatile Queue.

Parameters:

pQueueName --
Identifier, or name for this queue.

pMaxNumElements --
Pointer to a location in which, upon successful completion of this
function, the maximum number of queue elements will be placed.

pMaxElementSize --
Pointer to a location in which, upon successful completion of this
function, the maximum number of octets in any element’s data will be

72 CHAPTER 6. OPEN C PLATFORM

placed.

phQueue --
Pointer to a location in which a handle to this queue is placed, upon
successful completion of this function.

6.8.4 NVQ close
void
NVQ_close(void * hQueue);

Close a previously opened or created Non-Volatile Queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_create() or NVQ_open(), to the queue
to be closed.

6.8.5 NVQ delete
ReturnCode
NVQ_delete(charpQueueName);

Delete a Non-Volatile Queue.

Parameters:

pQueueName --
Identifier, or name of the queue to be deleted.

6.8.6 NVQ VIEW HEAD
#define NVQ_VIEW_HEAD(hQueue, ppData, pDataSize) \

nvq_viewData(hQueue, ppData, pDataSize, NVQ_Location_Head)

Retrieve a pointer to the data in the element at the head of the queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

ppData --
Pointer, of type unsigned char **, to a location in which to put a
pointer to the data.

6.8. NON-VOLATILE QUEUE (NVQ) 73

pDataSize --
Pointer, of type OS_Uint32 *, to a location in which to put Number of
octets of data pointed to by *ppData.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

WARNING:

DO NOT MODIFY THE DATA POINTED TO BY THE RETURNED DATA POINTER!

6.8.7 NVQ VIEW TAIL
#define NVQ_VIEW_TAIL(hQueue, ppData, pDataSize) \

nvq_viewData(hQueue, ppData, pDataSize, NVQ_Location_Tail)

Retrieve a pointer to the data in the element at the tail of the queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

ppData --
Pointer, of type unsigned char **, to a location in which to put a
pointer to the data.

pDataSize --
Pointer, of type OS_Uint32 *, to a location in which to put Number of
octets of data pointed to by *ppData.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

WARNING:

DO NOT MODIFY THE DATA POINTED TO BY THE RETURNED DATA POINTER!

6.8.8 NVQ VIEW ELEM
#define NVQ_VIEW_ELEM(hQueue, ppData, pDataSize, elem) \

nvq_viewData(hQueue, ppData, pDataSize, \
NVQ_Location_Element, (NVQ_Element) (elem))

74 CHAPTER 6. OPEN C PLATFORM

Retrieve a pointer to the data in the element at the specified location in the queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

ppData --
Pointer, of type unsigned char **, to a location in which to put a
pointer to the data.

pDataSize --
Pointer, of type OS_Uint32 *, to a location in which to put Number of
octets of data pointed to by *ppData.

elem --
Identifier, of type NVQ_Element, specifying for which element a pointer
to the data is to be returned.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

WARNING:

DO NOT MODIFY THE DATA POINTED TO BY THE RETURNED DATA POINTER!

6.8.9 NVQ INSERT AT HEAD
#define NVQ_INSERT_AT_HEAD(hQueue, pData, dataSize) \

nvq_insert(hQueue, \
(unsigned char *) (pData), \
dataSize, \
NVQ_Location_Head)

Insert an element at the head of a Non-Volatile Queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

pData --
Pointer to the start of the data to be inserted in this queue element.

6.8. NON-VOLATILE QUEUE (NVQ) 75

dataSize --
Number of octets of data pointed to by pData.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

6.8.10 NVQ INSERT AT TAIL
#define NVQ_INSERT_AT_TAIL(hQueue, pData, dataSize) \

nvq_insert(hQueue, \
(unsigned char *) (pData), \
dataSize, \
NVQ_Location_Tail)

Insert an element at the tail of a Non-Volatile Queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

pData --
Pointer to the start of the data to be inserted in this queue element.

dataSize --
Number of octets of data pointed to by pData.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

6.8.11 NVQ INSERT BEFORE
#define NVQ_INSERT_BEFORE(hQueue, pData, dataSize, beforeMe) \

nvq_insert(hQueue, \
(unsigned char *) (pData), \
dataSize, \
NVQ_Location_Before, \
beforeMe)

Insert an element before the specified element of a Non-Volatile Queue.

Parameters:

76 CHAPTER 6. OPEN C PLATFORM

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

pData --
Pointer to the start of the data to be inserted in this queue element.

dataSize --
Number of octets of data pointed to by pData.

beforeMe --
Identifier, of type NVQ_Element, of the element before which this new
element should be inserted into the queue.

Returns:

Success upon success insertion; a non-success ReturnCode otherwise.

6.8.12 NVQ INSERT AFTER
#define NVQ_INSERT_AFTER(hQueue, pData, dataSize, afterMe) \

nvq_insert(hQueue, \
(unsigned char *) (pData), \
dataSize, \
NVQ_Location_After, \
afterMe)

Insert an element after the specified element of a Non-Volatile Queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
on which an element is to be inserted.

pData --
Pointer to the start of the data to be inserted in this queue element.

dataSize --
Number of octets of data pointed to by pData.

aftere --
Identifier, of type NVQ_Element, of the element after which this new
element should be inserted into the queue.

Returns:

6.8. NON-VOLATILE QUEUE (NVQ) 77

Success upon success insertion; a non-success ReturnCode otherwise.

6.8.13 NVQ REMOVE HEAD
#define NVQ_REMOVE_HEAD(hQueue) \

nvq_remove(hQueue, NVQ_Location_Head)

Remove the element from the Non-Volatile Queue, which is at the queue’s head.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
from which the element is to be removed.

Returns:

Success upon success removal; a non-success ReturnCode otherwise.

6.8.14 NVQ REMOVE TAIL
#define NVQ_REMOVE_TAIL(hQueue) \

nvq_remove(hQueue, NVQ_Location_Tail)

Remove the element from the Non-Volatile Queue, which is at the queue’s tail.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
from which the element is to be removed.

Returns:

Success upon success removal; a non-success ReturnCode otherwise.

6.8.15 NVQ REMOVE ELEM
#define NVQ_REMOVE_ELEM(hQueue, elem) \

nvq_remove(hQueue, NVQ_Location_Element, (NVQ_Element) elem)

Remove a specified element from the Non-Volatile Queue

Parameters:

hQueue --

78 CHAPTER 6. OPEN C PLATFORM

Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
from which the element is to be removed.

elem --
Identifier, of type NVQ_Element, of the element which is to be removed
from the queue.

Returns:

Success upon success removal; a non-success ReturnCode otherwise.

6.8.16 NVQ FIRST

#define NVQ_FIRST(hQueue) \
(nvq_getTail(hQueue) >= 0 ? 0 : NVQ_NO_ELEMENTS)

Obtain a handle to the first element of the queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
for which the element handle is desired.

Returns:

A handle, of type NVQ_Element, to the first element on the queue.

6.8.17 NVQ LAST

#define NVQ_LAST(hQueue) \
(nvq_getTail(hQueue))

Obtain a handle to the last element of the queue.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
for which the element handle is desired.

Returns:

A handle, of type NVQ_Element, to the last element on the queue.

6.8. NON-VOLATILE QUEUE (NVQ) 79

6.8.18 NVQ NEXT
#define NVQ_NEXT(hQueue, elem) \

(++elem, elem > nvq_getTail(hQueue) ? \
NVQ_NO_ELEMENTS : elem)

Obtain a handle to the next element in the queue, given the current element.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
for which the element handle is desired.

elem --
Identifier, of type NVQ_Element, of the element to which the successor
element is desired.

Returns:

A handle, of type NVQ_Element, to the next element in the queue.

6.8.19 NVQ PREV
#define NVQ_PREV(hQueue, elem) \

(--elem)

Obtain a handle to the previous element in the queue, given the current element.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
for which the element handle is desired.

elem --
Identifier, of type NVQ_Element, of the element to which the
predecessor element is desired.

Returns:

A handle, of type NVQ_Element, to the previous element in the queue.

6.8.20 NVQ EQUAL
#define NVQ_EQUAL(hQueue, elem1, elem2) \

(elem1 == elem2)

80 CHAPTER 6. OPEN C PLATFORM

Compare two NVQ Element handles for equivilency.

Parameters:

hQueue --
Handle, previously returned by NVQ_open() or NVQ_create(), to the queue
for which the element handles are being compared

elem1, elem2 --
Identifiers, of type NVQ_Element, of the elements to be compared for
equality.

Returns:

TRUE if the identifiers reference the same queue element; FALSE
otherwise.

/*
* THE REMAINDER IS NOT PART OF THE USER INTERFACE. DO NOT REFERENCE THESE
* DIRECTLY IN USER PROGRAMS. OTHER PORTATIONS OF THIS MODULE MAY NOT CONTAIN
* THEM.
*/

typedef enum NVQ_Location
{

NVQ_Location_Head,
NVQ_Location_Tail,
NVQ_Location_Element,
NVQ_Location_Before,
NVQ_Location_After

} NVQ_Location;

ReturnCode
nvq_insert(void * hQueue,

unsigned char * pUserData,
OS_Uint32 userDataSize,
NVQ_Location location,
...);

ReturnCode
nvq_viewData(void * hQueue,

unsigned char ** ppData,
OS_Uint32 * pDataSize,
NVQ_Location location,

6.9. EXCEPTION HANDLING (EH) 81

...);

ReturnCode
nvq_remove(void * hQueue,

NVQ_Location location,
...);

NVQ_Element
nvq_getTail(void * hQueue);

6.9 Exception Handling (EH)
#include "eh.h"

This module provides a uniform interface for handling of software exceptions.
EH defines the Exception Handling interface. An abstract description of the service to be performed for each of

these facilities is described. The specific actions to be performed by each of these facilities may be altered by the
integrator depending on the availability of the operating environment facilities.

6.10 Log Module (LOG)
#include "log.h"

Void
LOG_init(void);

SuccFail
LOG_config(Char *tmFileName);

log_ModInfo *
LOG_open(Char *moduleName);

SuccFail
LOG_event(Char *format, ...);

Bool
LOG_modEvent(log_ModInfo *modInfo, Char *format, ...);

The Log Module (LOG) generates log messages in order to facilitate program monitoring. Within OCP, each
module may have its own particular degree of LOG tracing enabled at run-time. Developers may also use LOG
tracing within applications in a similar manner.

82 CHAPTER 6. OPEN C PLATFORM

Use of the Log Module has several advantages over other traditional tracing methods such as printf() statements:

1. Log messages have a consistent appearance.

2. Log calls need ever be removed from the code.

3. The log module output can be routed to selected devices or files.

Loging may also be globally enabled or disabled at compile time without performing any changes to the source
code, other than changing the value of a defined value in a single include file.

6.10.1 Log Module Initialization

Void
LOG_init()

SuccFail
LOG_config(char *pFileName)

Global initialization of LOG is performed by LOG init(), which should be called once at the start of a user
program and prior to any other LOG facilites. LOG Init() creates two queues of log module information - an active
queue and a setup queue. All information about LOG users is entered in these queues.

Use LOG config() to redirect LOG output to a device or file other than stdout.

6.10.2 LOG User Initialization

Void
LOG_OPEN(log_ModInfo *hModCB, char *modName)

LOG open() creates a new log module information entry in the active queue. modName is assigned to the entry’s
module name member. It’s bit mask setting is determined by the state of the setup queue. If there exists an entry in
the setup queue with the same module name (typically made by a call to LOG SETUP), then the mask is taken from
that queue. Otherwise the mask is set to zero (loging disabled).

LOG open() returns a pointer to the new entry in the active queue in hModCB.

6.10.3 Log Message Display

LOG_event(args)

Log messages are generated by the LOG event() facility, which accepts an argument list string and a variable
number of associated arguments.

6.11. TRACE MODULE (TM) 83

6.11 Trace Module (TM)

#include "tm.h"

Void
TM_INIT()

QU_Head *
TM_GETHEAD()

SuccFail
TM_CONFIG(char *pFileName)

Void
TM_OPEN(tm_ModInfo *hModCB, char *modName)

Void
TM_TRACE(args)

Bool
TM_QUERY(tm_ModInfo *modInfo, TM_Mask mask)

SuccFail
TM_VALIDATE()

Int
TM_SETUP(char *args)

LgInt
TM_HEXDUMP(hModCB, bits, msg, pdu, len)

Void
TM_CALL(hModCB, bits, pFunc, hParam1, hParam2)

For backwards compatibility:

Void
TM_init(void);

QU_Head *
TM_getHead(void);

SuccFail
TM_config(Char *tmFileName);

tm_ModInfo *

84 CHAPTER 6. OPEN C PLATFORM

TM_open(Char *moduleName);

SuccFail
TM_setMask(Char *moduleName, TM_Mask moduleMask);

Bool
tm_trace(tm_ModInfo *modInfo, TM_Mask mask, Char *format, ...);

Bool
TM_query(tm_ModInfo *modInfo, TM_Mask mask);

SuccFail
TM_validate(void);

Int
TM_setUp(Char * str);

LgInt
TM_hexDump(tm_ModInfo *modInfo, TM_Mask mask, String str,

unsigned char *address, Int length);

Void
TM_call(tm_ModInfo *modInfo,

TM_Mask mask,
void (* pfCallMe)(void * hParam1, void * hParam2),
void * hParam1,
void * hParam2);

The Trace Module (TM) selectively and dynamically generates trace messages in order to facilitate program de-
bugging. Within OCP, each module may have its own particular degree of TM tracing enabled at run-time. Developers
may also use TM tracing within applications in a similar manner.

Use of the Trace Module has several advantages over other traditional tracing methods such as printf() statements:

1. Trace messages have a consistent appearance.

2. Trace calls need ever be removed from the code.

3. Tracing can be altered at run-time.

4. The trace module output can be routed to selected devices or files.

Tracing may also be globally enabled or disabled at compile time without performing any changes to the source
code, other than changing the value of a defined value in a single include file. This allows fully debugged programs to
occupy minimal space.

The specific actions actually performed by each of the TM facilities may be altered by the integrator depending
upon the availability of the operating environment facilities. For instance time stamping may not be available on
systems lacking a time-of-day facility.

6.11. TRACE MODULE (TM) 85

IMPORTANT NOTE:
The public interface to the Trace Module, as presently defined, consists of a set of all-upper-case macros. The

mixed-case function calls are included here for backwards compatibility only and should not be used for new applica-
tions.

The macro interface contains hidden #ifdef TM_ENABLED preprocessor directives, thereby eliminating the need
to bracket each and every reference to TM module facilities with conditional compilation directives. This way, for
those applications that require minimal memory usage, the Trace Module can be eliminated entirely by undefining
TM ENABLED in oe.h.

6.11.1 Trace Module Initialization
Void
TM_INIT()

QU_Head *
TM_GETHEAD()

SuccFail
TM_CONFIG(char *pFileName)

SuccFail
TM_VALIDATE()

Global initialization of TM is performed by TM INIT(), which should be called once at the start of a user program
and prior to any other TM facilites. TM INIT() creates two queues of trace module information - an active queue and
a setup queue. All information about TM users is entered in these queues.

Use TM CONFIG() to redirect TM output to a device or file other than stdout.
TM VALIDATE() searches the setup queue for the names of invalid TM user modules and deletes them from the

queue.

6.11.2 TM User Initialization
Int
TM_SETUP(char *args)

Void
TM_OPEN(tm_ModInfo *hModCB, char *modName)

Independent module tracing functionalities may be selected by creating tracing modules through the TM SETUP()
and TM OPEN() facilities. Within each TM user module 16 different tracing types may be selected. Each type is
specified by a bit within a bit mask. Trace types range from 0x0000 to 0xffff.

The type of trace information to be displayed, is defined by the owner of the module with the exception of trace
type 0 (TM ENTER). Trace type (TM ENTER) is by convention used for external function entry tracing.

The criteria for displaying the trace information is that the bitwise and (&) result of the trace statement’s mask and
the dynamic tracing mask associated with that module is non-zero.

TM SETUP() reads an argument list of the form ”MODULE NAME,BITMASK” and enters the module name and
bit mask in either the setup queue or the active queue. If an associated user module has not yet registered itself with

86 CHAPTER 6. OPEN C PLATFORM

TM via a call to TM OPEN(), then a new trace module information entry is made in the setup queue. Otherwise, the
information goes in an exisiting entry in the active queue. For example, if args equals "G_,ffff" then a queue entry
will be made in which the G module is assiged the bit mask 0xffff. If the G module has not yet registered itself, then
this information will go in the setup queue. Otherwise it will go in the active queue.

TM OPEN() creates a new trace module information entry in the active queue. modName is assigned to the entry’s
module name member. It’s bit mask setting is determined by the state of the setup queue. If there exists an entry in the
setup queue with the same module name (typically made by a call to TM SETUP), then the mask is taken from that
queue. Otherwise the mask is set to zero (tracing disabled).

TM OPEN() returns a pointer to the new entry in the active queue in hModCB.

6.11.3 Trace Message Display
TM_TRACE(args)

Trace messages are generated by the TM TRACE() facility, which accepts an argument list string and a variable
number of associated arguments.

6.11.4 Example Usage
The following code fragment demonstrates the usage of the Trace Module.

#define TM ENABLED

#include <stdio.h>
#include "estd.h"
#include "tm.h"
#include "getopt.h"

Void G init(), T init(), T action();
10

TM ModDesc G tmDesc;

main(argc, argv)
Int argc;
String argv[];
{

Int c;

G init();
20

while ((c = getopt(argc, argv, "T:t:")) != EOF) {
switch (c) {
case ’T’:
case ’t’:

TM setUp(optarg);
break;

case ’?’:
default:

exit(1);

6.11. TRACE MODULE (TM) 87

} 30

}

TM trace(G tmDesc, TM ENTER, "G_ can be used by orphand modules\n");

T init();
TM validate();

T action();
}

40

Void G init()
{

TM init();
G tmDesc = TM open("G_");

}

/*
* T MODULE
*/

50

TM ModDesc t tmDesc;

Void T init()
{

t tmDesc = TM open("T_");
}

Void T action()
{

static Char *someData = "SOME DATA"; 60

#ifdef TM ENABLED
TM trace(t tmDesc, TM ENTER, "Action, someData=%s\n",

TM prAddr(someData));
TM dumpHex(t tmDesc, TM ENTER, "someData",

someData, strlen(someData)+1);
#endif

#ifdef TM ENABLED
if (TM query(t tmDesc, TM BIT1)) { 70

printf("%s This way we can extend TM_ capabilities\n",
TM here());

}
#endif
}

Figure 6.5: TM Example Usage Source Code

88 CHAPTER 6. OPEN C PLATFORM

6.11.5 Run Time Control of TM
In the previous example, if you wished to enable trace options for a module, you would specify, on the command line,
the following:

-T ¡module name¿,¡hex bits¿
where ¡module name¿ is a valid OCP module, i.e. SCH , TMR , etc, and ¡hex bits¿ is a hexidecimal value (without

a leading ”0x”) specifying which trace bits for that module to enabled.
Multiple sets of -T options may be specified to enable tracing for more than one module.
For example:

ops_xmpl -T UDP_,ffff -T IMQ_,3

General usage dictates that lower-order bits produce less output. The lowest-order bits are often useful even during
normal operation of the application. Bits above the first byte are reserved for trace options that provide a lot of output,
such as dumping of complete PDUs.

TM Output

The actual format of a Trace Module output may vary between implementations. The following example, however, is
typical of many hosted systems. Each trace contains the source file name and line number from which the trace was
generated, followed by a variable number of user data fields. For example:

clinvktd.c, 197: fsm_ePass: machine=0x60e38 evtId=0x8

6.12 SAP management (SAP)
#include "addr.h"
#include "sap.h"

String SAP_selGet(SapSelector *sel, String str);
String SAP_selPr(SapSelector *sel, Char *first, Char *last);
Int SAP_selCmp(SapSelector *sel1, SapSelector sel2);

String SAP_nAddrGet(N_SapAddr *nsap, String str);
String SAP_nAddrPr(N_SapAddr *nsap, Char *first, Char *last);
Int SAP_nAddrCmp(N_SapAddr *nsap1, N_SapAddr nsap2);

SAP module is responsible for SAP address management. An overview of SAP address representation is first
provided.

6.12.1 Representation of a SAP Address
A hierarchical SAP addressing scheme is used. At the Network layer, communicating entities are identified by their
NSAP addresses. The Network layer uniquely identifies each of the open systems by their NSAP addresses. Let’s take
the case of a layer (N) above the Network layer. In this case, an (N) address consists of two parts:

1. an (N-1)-SAP address of the (N) entity which is supporting the current (N)-SAP of the (N+1) entity.

6.13. TIMER MANAGEMENT MODULE (TMR) 89

2. an (N)-SAP address selector (suffix) which makes the (N)-SAP uniquely identifiable within the scope of the
(N-1)-SAP address.

The (N)-SAP address is a unique representation of a SAP to the OSI environment. The (N)-SAP address selector
is a unique representation of a SAP to the service provider. The SAP address selector is communicated to the service
provider during the creation of the SAP.

All software layers use a uniform representation for SAP address selectors and SAP addresses. Data abstractions
used by software layers to represent SAP addressing are in addr.h.

A SAP address selector in general has the form:

typedef struct SapSelector {
Int len;
Byte addr[SAPSZ];

} SapSelector;

The Network layer SAP address is of particular importance and has the form:

typedef struct N_SapAddr {
Int len;
Byte addr[NSAPSZ];

} N_SapAddr;

Above the network layer, SAP addresses are constructed on top of N SapAddr. For example, the Presentation SAP
address has the form:

typedef struct P_SapAddr{
S_SapSelector ssap;
T_SapSelector tsap;
N_SapAddr nsap;

} P_SapAddr;

6.12.2 SAP Address Manipulation Facilities
SAP selGet is facility that converts an ascii representation of a SAP address into a representation suited for SapSelector
or SapAddr storage.

SAP selCmp is a facility that compares two SapSelectors for equality. Zero is returned if the two were identical.
A non-zero value is returned if the two were not identical.

6.13 Timer Management Module (TMR)
#include "tmr.h"

void
TMR_init(OS_Uint16 numberOfTimers, OS_Uint16 millisecondsPerTick);

ReturnCode

90 CHAPTER 6. OPEN C PLATFORM

TMR_start(OS_Uint32 milliseconds,
void * hUserData1,
void * hUserData2,
ReturnCode (* pfHandler)(void * hTimer,

void * hUserData1,
void * hUserData2),

void ** phTimer);

void *
TMR_create(LgInt milliseconds, Int (*pfHandler)());

void
TMR_stop(void * hTimer);

void
TMR_cancel(void * hTimer);

ReturnCode
TMR_processQueue(OS_Boolean * pProcessedSomething);

void
TMR_poll(void);

void
TMR_startClockInterruptPlus(void (* pfHandler)(void));

SuccFail
TMR_startClockInterrupt(Int period);

void
TMR_stopClockInterrupt(void);

void
TMR_setLocalDataSize(OS_Uint16 size);

OS_Uint16
TMR_getLocalDataSize(void);

void *
TMR_getData(void * hTimer);

void *
TMR_getDesc(void * pLocalData);

OS_Uint32
TMR_diff(OS_Uint32 time1, OS_Uint32 time2);

6.13. TIMER MANAGEMENT MODULE (TMR) 91

Many data communication protocols rely on the availability of timer facilities, yet these facilities are inherently
environment dependent. The TMR module defines a model and an interface for providing timer facilities to Open C
Layers, regardless of the environment, provided that all implementations of the TMR module conform to the interface
defined here.

A timer is created through the TMR start() or TMR create() facilities. Unless the timer is canceled through the
TMR stop() or TMR cancel() facilities it will expire at the specified time. The time for the expiration of a timer is
specified in millisecond relative to now. When the timer expires, the TMR module schedules a user-supplied function
for synchronous invocation. The granularity of timers is environment specific. Timers created through TMR start() or
TMR create() are not ”sticky”. If a periodic timer is desired it must be repeatedly re-created.

6.13.1 Starting a Timer

ReturnCode
TMR_start(OS_Uint32 milliseconds,

void * hUserData1,
void * hUserData2,
ReturnCode (* pfHandler)(void * hTimer,

void * hUserData1,
void * hUserData2),

void ** phTimer);

void *
TMR_create(LgInt milliseconds, Int (*pfHandler)());

TMR start() and TMR create() both start a new timer and arrange, via the scheduler module (SCH), for the
synchronous invocation of the user-supplied function pfHandler when this timer expires.

A limited amount of user data can be associated with each timer. A pointer to the user specific data buffer is passed
as a parameter to pfHandler, i.e.

(*pfHandler)(tmrData);

The timer expiration time is specified in absolute milliseconds relative to present. The time argument must be
positive; a negative value or a value of 0 is illegal.

6.13.2 Stopping a Timer

void
TMR_stop(void * hTimer);

void
TMR_cancel(void * hTimer);

TMR stop() and TMR cancel() both halt an active timer and remove it from the timer queue. hTimer is a timer
descriptor previously obtained by TMR create() or TMR start().

92 CHAPTER 6. OPEN C PLATFORM

6.13.3 Associating User Data with Timers

void *
TMR_getData(void * hTimer);

void *
TMR_getDesc(void * pLocalData);

A limited amount of user data can be associated with each timer. The size limit of the user data is implementation
specific. Likewise, the semantics of this data are specific to the user and irrelevant to the timer module.

The location of the user data may be obtained by the TMR getData() facility.
Conversely, given a pointer to some user data, the timer associated with that data can be obtained by the TMR getDesc()

facility.

6.13.4 Implementation Specific Interfaces

void
TMR_init(OS_Uint16 numberOfTimers, OS_Uint16 millisecondsPerTick);

void
TMR_startClockInterruptPlus(void (* pfHandler)(void));

SuccFail
TMR_startClockInterrupt(Int period);

void
TMR_stopClockInterrupt(void);

ReturnCode
TMR_processQueue(OS_Boolean * pProcessedSomething);

void
TMR_poll(void);

The timing mechanisms that underlie the TMR module are implementation-specific. For instance, in unhosted
environments, the TMR module can be implemented based on a periodic interrupt. On the other hand, in hosted
environments, the TMR module can be implemented based on operating system-supplied timing mechanisms such as
the Unix signal() facility. In either case the interface described below can be used for initialization and integration of
the TMR module.

• Initialization of the TMR module is performed through TMR init(), which must be invoked prior to using any
of the other timer module facilities. numberOfTimers specifies the maximum number of timers that may be in
use at any one moment. millisecondsPerTick specifies how often a clock ”tick” is generated.

• TMR startClockInterruptPlus() and TMR startClockInterrupt() both start the timer module clock tick. On un-
hosted systems this has the effect of enabling the TMR module clock interrupt source. TMR startClockInterruptPlus()

6.13. TIMER MANAGEMENT MODULE (TMR) 93

allows the user to specify the routine that is called when a clock tick occurs but uses a built-in number of mil-
liseconds per tick. TMR startClockInterrupt() uses a predefined service routine but allows the user to specify
the number of milliseconds per tick.

• TMR stopClockInterrupt() disables the clock tick. On unhosted systems this has the effect of disabling the
TMR module interrupt source.

• TMR poll() or TMR processQueue() must regularly be called to process expired timers. TMR processQueue()
provides additional information about the status of its completion via the Boolean parameter pProcessedSome-
thing. In both hosted and unhosted systems, TMR poll() or TMR processQueue() are scheduled for execution
by the clock tick service routine via the OCP scheduler (SCH) facility SCH submit(). It is during the execution
of these facilities that the user functions themselves are invoked.

• TMR clock() is the entry point to the clock tick handler routine.

6.13.5 Example Usage
The following code fragment demonstrates the use of the timer facilities.

/*
* tmr ex.c
*
* This simple program demonstrates the use of timer facilities
* for a relative measurement of CPU speed.
*/

#include <stdio.h> 10
#include <signal.h>

#ifdef MSDOS
#include <conio.h>
#endif

#include "estd.h"
#include "eh.h"
#include "tmr.h"
#include "getopt.h" 20
#include "tm.h"
#include "sch.h"

#define CLOCK PERIOD 1100 /* millisec. Granularity of the timer tick is 54.94msec
for DOS */

#define SAMPLE PERIOD 2000 /* millisec. Sampling Period */
#define LOAD FACTOR 10 /* Simulated Load */

typedef enum TmrId {
PURE, 30
IDLE

} TmrId;

typedef struct G Env {
Char *progName;

94 CHAPTER 6. OPEN C PLATFORM

/* Application Specific Information */
} G Env;

#ifdef MSDOS
int G isrActive; 40
#endif

LgUns pureCpu; /* Measure of “CPU cycles” in one Sample */
LgUns idleCpu; /* Measure of “CPU cycles” in one Sample, under load */
Bool reset = FALSE;
LgUns samplePeriod = SAMPLE PERIOD;
Int loadFactor = LOAD FACTOR;
Int clockPeriod = CLOCK PERIOD;
Bool pureSampling;
PUBLIC G Env G env; 50

Void samplePureCpu();
Void IDLE tmrHandler(void*);
Void IDLE init(void);
Void IDLE action(void*);
Void LOAD init(int), LOAD action(void*);
Void G usage(void);
Void G exit();

60

/*<
* Function:
*
* Description:
*
* Arguments:
*
* Returns:
* 70
>*/
int
main(int argc, char **argv)
{

Int c;
Bool badUsage;

G env.progName = argv[0];
TM init();

80
/*
* Process the command line arguments.
*/

badUsage = FALSE;
while ((c = getopt(argc, argv, "T:s:l:h:c:")) != EOF) {

switch (c) {
case ’T’:

TM setUp(optarg);
break;

90
case ’s’:

samplePeriod = atol(optarg);

6.13. TIMER MANAGEMENT MODULE (TMR) 95

break;

case ’l’:
loadFactor = atoi(optarg);
break;

case ’c’:
clockPeriod = atoi(optarg); 100
break;

case ’h’:
default:

badUsage = TRUE;
break;

}
}

if (badUsage) { 110
G usage();
G exit(1);

}

printf("\nclock period = %d milliseconds", clockPeriod);
printf("\nsample period = %d milliseconds", (int)samplePeriod);
printf("\nload factor = %d\n", loadFactor);

/*
* OCP Intialization. 120
*/

signal(SIGINT, G exit); /* ctrl-c handler */
SCH init(22);
TMR init(22, clockPeriod);
TMR startClockInterrupt(clockPeriod);
TM validate();

/*
* Step 1.
*/ 130

samplePureCpu();

/*
* Step 2.
*/

IDLE init();
LOAD init(loadFactor);

#ifdef MSDOS
while (!kbhit()) { 140

#else
while (1) {

#endif
SCH block();
SCH run();

}

G exit(0);
return 0;

96 CHAPTER 6. OPEN C PLATFORM

} 150

/*<
* Function: G exit
*
>*/

Void
G exit(Int code)
{ 160

TMR stopClockInterrupt();
exit(code);

}

/*<
* Function: G usage
*
>*/

Void 170
G usage(void)
{

String usage1 = "[-T module_name,trace_mask] [-s sample_period] [-l load_factor] [-c clock_period]";
printf("\n%s: Usage: %s\n", G env.progName, usage1);

}

/*<
* Function: samplePureCpu
* 180
* Description:
*
* Count the number of passes made through the scheduler in one sample
* period with nothing else happening. This is the “pure CPU” measure.
*
* while (pureSampling) {
* ++pureCpu;
* SCH block();
* SCH run();
* } 190
*
*
>*/

Void samplePureCpu()
{

TMR Desc tmrDesc;
TmrId *tmrId;
static int n;

200
/*
* Create a timer which expires after ’samplePeriod’ milliseconds
* and which then invokes (via the scheduler) the function ’IDLE tmrHandler’
*/

tmrDesc = TMR create((LgInt)samplePeriod,(void*)IDLE tmrHandler);
tmrId = (TmrId *) TMR getData(tmrDesc);

6.13. TIMER MANAGEMENT MODULE (TMR) 97

*tmrId = PURE;
pureSampling = TRUE;
pureCpu = 0;

210
while (pureSampling) {

/* do this until the timer expires */
++pureCpu;
SCH block();
SCH run(); /* expired timers are invoked here */

}

/* Make a note of the value of pureCpu */
printf("%d: pureCpu = %ld\n", n++, pureCpu);

} 220

/*<
* Function: IDLE tmrHandler
*
* Description:
*
* Repetitively calculate and display the ratio of the idleCpu counter to
* the pureCpu counter. As loadFactor is made larger this ratio will become
* smaller. 230
*
>*/

Void
IDLE tmrHandler(void *tmrData)
{

TMR Desc tmrDesc;
TmrId *tmrId;
static int n;

240
#ifdef MSDOS

if (kbhit())
G exit(0);

#endif

tmrId = (TmrId *)tmrData;

/* Did we get here as the result of samplePureCpu() ?
* If so, just set the flag and exit.
*/ 250

if (*tmrId == PURE) {
pureSampling = FALSE;
n = 0;

/* we must have gotten here as the result of IDLE init(), so
* perform the calculation
*/
} else if (*tmrId == IDLE) {

if (idleCpu != 0)
printf("%d: idleCpu=%ld, idleCpu/pureCpu=%f\n", n++, idleCpu, 260

(float)idleCpu/(float)pureCpu);
else

printf("Oops! idleCpu = %ld\n", idleCpu);

98 CHAPTER 6. OPEN C PLATFORM

idleCpu = 0;
tmrDesc = TMR create((LgInt)samplePeriod, (void*)IDLE tmrHandler);
tmrId = (TmrId *) TMR getData(tmrDesc);
*tmrId = IDLE;

} else {
EH oops(); 270

}
}

/*<
* Function: IDLE init
*
* Description:
*
* Schedule the invocation of IDLE tmrHandler() after one sample period. 280
* Schedule the immediate invocation IDLE action().
*
>*/

Void
IDLE init(void)
{

TMR Desc tmrDesc;
TmrId *tmrId;

290
idleCpu = 0;
tmrDesc = TMR create((LgInt)samplePeriod, (void*)IDLE tmrHandler);
tmrId = (TmrId *) TMR getData(tmrDesc);
*tmrId = IDLE;
SCH submit((void*)IDLE action, (Ptr)0,0,"in IDLE_init()");

}

/*<
* Function: IDLE action
* 300
* Description:
*
* This function increments the idleCpu counter and then reschedules itself.
* In effect, this is as infinite loop but performed through the scheduler,
* allowing other concurrent action to take place.
*
* As the CPU becomes more heavily loaded with other scheduled activity,
* this function will be invoked less frequently.
>*/

310
Void
IDLE action(void *argunused)
{

++idleCpu;
SCH submit((void*)IDLE action, (Ptr)0,0,"in IDLE_action()");

}

/*<
* Function: LOAD init 320

6.14. DATA UNIT MANAGEMENT (DU) 99

*
* Description:
*
* Schedule the immediate invocation of LOAD action().
*
>*/

Void
LOAD init(Int load)
{ 330

loadFactor = load;
SCH submit((void*)LOAD action, (Ptr)0,0,"in LOAD_init()");

}

/*<
* Function: LOAD action
*
* Description:
*
* This function hogs some CPU time and then reschedules itself. 340
* Thus, the larger loadFactor, the fewer CPU cycles there are available
* for other activity.
*
>*/

Void
LOAD action(void *argsunused)
{

Int i;
350

/* Hog some time */
for (i=0; i < loadFactor; ++i) {
}

/* Schedule to do it again */
SCH submit((void*)LOAD action, (Ptr)0,0,"in LOAD_action()");

}

360

Figure 6.6: TMR Module Example Usage Source Code

/* Call Graph for the example program */

6.14 Data Unit Management (DU)
#include "du.h"

DU_PoolDesc DU_poolCreate(bufSize, nuOfBufs, nuOfViews)
Int bufSize, nuOfBufs, nuOfViews;

100 CHAPTER 6. OPEN C PLATFORM

DU_View DU_alloc(DU_PoolDesc pool, Int nuOfBytes);

DU_View DU_link(DU_View view);

Void DU_free(DU_View view);

Void DU_prepend(DU_View view, Int nuOfBytes);
Void DU_adjust(DU_View view, Int nuOfBytes);
Void DU_strip(DU_View view, Int nuOfBytes);
Ptr DU_data(DU_View view);
Int DU_size(DU_View view);

Ptr DU_vToUinfo(DU_View view);
DU_View DU_uInfoToV(Ptr uInfo);

DU module provides an environment independent interface to a set of facilities providing data unit management
capabilities. Propagation of protocol data through the lower layers is accomplished through the DU module. Data
is not copied as it propagates through Open C Layers. By minimizing memory-to-memory block transfers higher
performance is achieved.

When propagating down the layers, initially a data unit is allocated at the top layer. This data unit is stored in a
buffer that is large enough to contain all protocol control information that any of the lower layers may prepend to it.
(N+1) Open C Layer passes a ”view” of the data unit as an (N)-SDU to (N) Open C Layer. (N) Open C Layer appends
its (N)-PCI to the view and delivers its (N)-PDU to (N-1) Open C Layer. This is repeated until the data unit is reached
to the bottom layer.

When propagating up the layers, initially the bottom layer allocates the data unit. (N-1) Open C Layer delivers a
view of the data unit as an (N-1)-SDU to (N) Open C Layer. (N) layer strips its PCI from the (N)-PDU and delivers
the resulting (N)-SDU to (N+1) layer. This is repeated until the data unit is reached to the top layer.

The Data Unit management module is a set of facilities and data abstractions that can create, manipulate, and delete
data units. DU facilities may be implemented based on SF mem facilities described in the previews sections. Descrip-
tion of DU services in this section is based around such an implementation. This concrete example implementation
eases the understanding of the DU module interface description.

Four basic data structures are central to DU module:

struct du PoolInfo *

du PoolInfo *

DU PoolDesc Is a reference to du PoolInfo which contains information about a pool of du BufInfos. The maximum
size of buffers in the pool is fixed. Each pool maintains a list of available du BufInfos.

struct du BufInfo

du BufInfo Contains the space for the largest potential data unit of the pool that it belongs to. du BufInfo is an
abstraction private to the DU module. It is not expected to be operated upon by the DU user. It is described
here, to ease the understanding of the operation of the DU module.

struct DU Elem *

6.14. DATA UNIT MANAGEMENT (DU) 101

DU Elem *

DU View The central abstraction in DU module is DU View. DU Elem contains specific information that can pro-
vide a view over a particular du BufInfo.

typedef struct DU_Elem *DU_View;

provides a convenient abstraction over this commonly manipulated data structure. One field in struct DU Elem
is a pointer to du BufInfo . Each DU Elem contains an area of memory reserved for the user. The size of this
user information area is implementation specific. Each DU Elem is expected to allow for a QU elem to be
casted over it.

Byte uInfo[] Each DU Elem contains an area of memory reserved for its user. The semantics of the data that may be
stored in this area is specific to the user and irrelevant to the DU module.

An allocated DU View and a free DU View are illustrated in the following two figures.
DU poolCreate is expected to be invoked during initialization of the system. DU poolCreate creates a data unit

pool and returns a pool descriptor. All Open C Layers may rely on the existence of a buffer pool called G duMainPool.
The external declaration of G duMainPoool is expected to be in g.h. Specified number of du BufInfo and DU Views
are reserved. Several buffer pools with potentially different buffer sizes may coexists in Open C Environment.

DU alloc involves the allocation of one du BufInfo from the specified pool and the allocation of one DU Elem.
DU Elem is then associated with du BufInfo. The DU Elem is a specific view private to the caller. Each DU Elem
is expected to allow for a QU elem to be casted over it. DU alloc performs a QU init to the allocated DU View
. The amount of data specified for allocation, must be smaller than the maximum buffer size associated with the
specified pool. The remaining space (maximum buffer size minus the requested buffer size) can be accessed through
the DU prepend facility.

The following figure illustrates the status of DU structures after a DU alloc.
DU link provides an additional view over an existing du BufInfo . The DU Link facility enables the user to

maintain more than one view of the same buffer.
DU free deallocates the specified DU View . If no other views of the buffer exists then the du BufInfo associated

with DU View is also deallocated. du BufInfo is preserved for as long as there is at least one DU View referring to it.
The number of references to each du BufInfo is maintained in refCount field. Upon allocation this refCount is set to
1. Each DU link increments refCount by 1. Each DU free decrements refCount by 1.

The following figure demonstrates the status of DU structures after DU free invocation.
The external interface to the buffer management module is described below.

6.14.1 Creation of a Pool
DU_PoolDesc DU_poolCreate(bufSize, nuOfBufs, nuOfViews)
Int int bufSize, nuOfBufs, nuOfViews;

A buffer pool descriptor (DU PoolDesc) must be obtained before any views that are associated with it can be
allocated. The return value of this function must be used in future usage of DU facilities referring to this pool.
bufSize specifies the maximum size of the buffers that can be allocated from this pool. nuOfBufs specifies how many
du BufInfos will be available for allocation. nuOfBufs specifies how many DU Views will be available for allocation
or linkage.

Open C Layers can assume the existence of one buffer pool named G duMainPool. Therefore:

102 CHAPTER 6. OPEN C PLATFORM

 (*un.pool)
(*end)
refCount > 0

data [MAXBUFSZ]

/*TopOfData*/

/*BottomOf Data*/
ENDOF (data)

 (*next)
(*prev)
(*bufInfo)
(*addr)
uInfo[]

ENDOF (uINFO)

(*bufFreeList)
size = MAXBUFSZ
count

Next free du_BufInfo

du_BufInfo

du_PoolInfo

(*DU_View)
du_Elem

Figure 6.7: An Allocated View

6.14. DATA UNIT MANAGEMENT (DU) 103

 (*un.next)
(*end)
refCount = 0

ENDOF (data)

Next
du_BufInfo

(*DU_View)
du_Elem

 (*next)
(*prev)
(*bufInfo)
(*addr)
uInfo[]

ENDOF (uINFO)

 Prev DU_View

(*bufFreeList)
size = MAXBUFSZ
count

du_BufInfo

du_PoolInfo

 Next DU_View

Figure 6.8: A Free View

104 CHAPTER 6. OPEN C PLATFORM

G_duMainPool = DU_poolCreate(bufSize, nuOfBufs, nuOfViews);

is expected of G module.

6.14.2 Creation of a Data Unit
DU_View DU_alloc(DU_PoolDesc pool, int nuOfBytes);

DU alloc, allocates a new du BufInfo structure from the specified pool pool. pool must have been obtained
through DU poolCreate . A DU Elem is allocated and initialized according to the specified nuOfBytes. A refer-
ence to DU Elem is returned to the user as a DU View. NULL is returned if no du BufInfo were available or if no
DU View were available or if the nuOfBytes argument was larger than the maximum buffer size associated with pool.
du BufInfo.refCount is set to 1.

6.14.3 Creating a new View
DU_View DU_link(DU_View view);

DU link provides an additional view over an existing du BufInfo. view must have been obtained through DU alloc.
NULL is returned if there are no DU Views remaining. du BufInfo.refCount is incremented.

6.14.4 Freeing a View
Void DU_free(DU_View view);

DU free deallocates view. view must have been obtained through DU alloc or DU link. du BufInfo.refCount is
decremented. If refCount becomes zero, the du BufInfo is no longer in use and du BufInfo is returned to the buffer
pool from which it was originally allocated.

6.14.5 Manipulating a View’s Data
Void DU_prepend(DU_View view, Int nuOfBytes);
Void DU_adjust(DU_View view, Int nuOfBytes);
Void DU_strip(DU_View view, Int nuOfBytes);
Ptr DU_data(DU_View view);
Int DU_size(DU_View view);

DU prepend facility prepends bytes at the beginning of the specified data unit. It is often used to create space for
the Protocol Control Information (PCI) to be prepended by Open C Layers. It is the responsibility of the user to to
assure the availability of space. DU prepend does not do any range checking for excessive prepends. The appended
bytes are not initialized to any specific value.

DU strip facility strips (removes) nuOfBytes bytes from the beginning of the view. It is often used to remove
protocol control information from PDUs as they propagate up the layers.

DU adjust facility adjusts (moves) the end of buffer pointer by nuOfBytes bytes. The effect of DU adjust is not
private to view. All views of DU Elem.bufInfo are affected.

6.14. DATA UNIT MANAGEMENT (DU) 105

DU data facility returns a pointer to the first byte of data as viewed through the specified view. If view is NULL,
NULL is returned.

DU size facility returns the current length of the buffer as observed by the specified view. If view is a NULL
pointer, zero is returned.

6.14.6 Accessing a View’s User Information
Ptr DU_vToUinfo(DU_View view);

DU_View DU_uInfoToV(Ptr uInfo);

In order to access the user specific information associated with a view two facilities are provided. Given a view,
DU vToUinfo delivers a pointer to the area of memory that can be used by the user. Given a pointer to an area
of memory that was previously obtained through DU vToUinfo, DU uInfoToV can be used to obtain the DU View
associated with the uInfo .

6.14.7 Example Usage
The following code fragment demonstrates the use of buffer management facilities.

/*
* This example program demonstrates the propagation of a
* Data Unit through Open C Layers;
* UPPER , N and LOWER .
*/

#include "estd.h"
#include "eh.h"
#include "du.h"

10
DU PoolDesc *G duMainPool; /* Buffer Pool */
#define MAXBUFSIZE 1548 /* no special significance */
#define NUOFBUFS 22 /* no special significance */
#define NUOFVIEWS (2*NUOFBUFS) /* no special significance */

main()
{

static char n sdu[] = "(N)-SDU";
DU View view;

20
G duMainPool = DU poolCreate(MAXBUFSIZE, NUOFBUFS, NUOFVIEWS);
if (! G duMainPool) {

EH fatal("G_duMainPool");
}
UPPER init(&n sdu[0], (Int) sizeof(n sdu));

}

UPPER init(data, size)
Char *data;
Int size; 30

106 CHAPTER 6. OPEN C PLATFORM

{
/* Allocate a Data Unit */
view = DU alloc(G duMainPool, size);
if (! view) {

EH fatal("view");
}
BS memCopy(data, DU data(view), size);

/* deliver n sdu to (N) layer */
N dataReq(view); 40

}

N dataReq(view)
DU View view;
{

static char n pci[] = "(N)-PCI ";
#define NPCI SIZE (sizeof(n pci)−1) /* Don’t want the ’\0’ */

/* Add (N) layer Protocol Control Information
* and pass it down to layer below. 50

*/
DU prepend(view, NPCI SIZE);
BS memCopy(n pci, DU data(view), NPCI SIZE);

LOWER dataReq(view);
}

LOWER dataReq(view)
DU View view;
{ 60

printf("(N-1)-SDU = %s\n", (char *) DU data(view));
DU free(view);

}

Figure 6.9: DU Module Example Usage Source Code

Upon execution this example program produces:

(N-1)-SDU = (N)-PCI + (N)-SDU

The flow of this example program is:

DU_ Module Example Usage Call Graph

6.15. BUFFER (BUF) 107

6.15 Buffer (BUF)

ReturnCode
BUF_alloc(OS_Uint16 minSize, void ** phBuf)

void
BUF_free(void * hBuf)

ReturnCode
BUF_addOctet(void * hBuf, OS_Uint8 octet)

ReturnCode
BUF_getOctet(void * hBuf, OS_Uint8 * pOctet)

ReturnCode
BUF_ungetOctet(void * hBuf)

ReturnCode
BUF_prependChunk(void * hBuf,

STR_String string)

ReturnCode
BUF_prependBuffer(void * hBuf,

void * hPrependThisBuf);

ReturnCode
BUF_getChunk(void * hBuf,

OS_Uint16 * pChunkLength,
unsigned char ** ppData)

ReturnCode
BUF_appendChunk(void * hBuf,

STR_String string)

ReturnCode
BUF_appendBuffer(void * hBuf,

void * hAppendThisBuf)

void
BUF_resetParse(void * hBuf)

ReturnCode
BUF_copy(void * hBufSrc,

void ** phBufDest);

108 CHAPTER 6. OPEN C PLATFORM

ReturnCode
BUF_cloneBufferPortion(void * hBuf,

OS_Uint32 len,
OS_Boolean bStripClonedPortion,
void ** phNewBuf)

OS_Uint32
BUF_getBufferLength(void * hBuf)

void
BUF_dump(void * hBuf, char * pMsg)

6.15.1 Allocate and Free a Buffer
ReturnCode
BUF_alloc(OS_Uint16 minSize, void ** phBuf);

Allocate a new buffer. The buffer will contain, initially, one segment which is large enough to hold (at least) the
specified number of octets.

If the minimum size is not known, zero may be passed, and a default zero-size buffer segment will be allocated,
initially.

Parameters:
minSize --

Minimum size of for the data area within the
buffer segment. A buffer segment will be
provided (if possible) which has at least this
much space available.

phBuf --
Pointer to memory where a buffer handle is to be
placed.

Returns:

Success or ResourceError or one of the BUF_RC_* return
codes.

void
BUF_free(void * hBuf);

Free the specified buffer and all of its associated segments.

Parameters:

hBuf -- Handle to a buffer, previously returned by

6.15. BUFFER (BUF) 109

BUF_alloc(), which is to be freed.

Returns:
Nothing.

6.15.2 Add, Get, and Unget an Octet
ReturnCode
BUF_addOctet(void * hBuf, OS_Uint8 octet);

Prepend a single octet to a buffer. If there is insufficient space in the current segment, a new segment is allocated,
of the default size.

Parameters:
hBuf --

Handle to the buffer, previously returned by
BUF_alloc(), in which the octet is to be
prepended.

octet --
The octet value to be prepended to the buffer.

Returns:
Success upon success;
Fail if allocating a new segment failed.

ReturnCode
BUF_getOctet(void * hBuf, OS_Uint8 * pOctet);

Get the next octet in the buffer.

Parameters:
hBuf --

Handle to the buffer, previously returned by
Buf_alloc(), from which the octet is to be
obtained.

pOctet --
Pointer to a memory location in which the
retrieved octet is to be placed.

Returns:
Success if an octet was available; Fail otherwise.

ReturnCode
BUF_ungetOctet(void * hBuf);

Return the most recently retrieved octet to the input buffer stream.

110 CHAPTER 6. OPEN C PLATFORM

Parameters:
hBuf --

Handle to the buffer, previously returned by
Buf_alloc(), from which an octet is to be
returned.

Returns:
Nothing.

6.15.3 Allocate and Assign a New Buffer Segment
ReturnCode
BUF_prependChunk(void * hBuf,

STR_String string);

This function allocates a new buffer segment, and assigns the specified string to that segment. The internal buffer
pointers are left in such a state as to allow prepending additional octets. Any additional octets prepended will cause a
new buffer segment to be created, as the segment for this prepended chunk takes up its own whole segment.

Parameters:
hBuf --

Handle to the buffer, previously returned by
BUF_alloc(), in which space is being requested.

string --
A string handle, which is to be prepended to the
buffer.

Returns:

On error, ResourceError is returned.

6.15.4 Prepend a Buffer
ReturnCode
BUF_prependBuffer(void * hBuf,

void * hPrependThisBuf);

This function prepends one buffer to another. The internal buffer pointers are left in such a state as to allow
prepending additional octets.

Parameters:
hBuf --

Handle to the buffer, previously returned by
BUF_alloc(), in which space is being requested.

hPrependThisBuf --

6.15. BUFFER (BUF) 111

Handle to the buffer, previous returned by
BUF_alloc(), which is to be prepended to hBuf.

Returns:

Currently, this function always returns Success.

6.15.5 Get the Next Chunk of a PDU
ReturnCode
BUF_getChunk(void * hBuf,

OS_Uint16 * pChunkLength,
unsigned char ** ppData);

When parsing, this function returns a pointer to the next chunk of the PDU. The size of the chunk is determined
by the value of *pChunkLength when this function is called, and by the amount of data remaining in the current (or
first non-zero-length) segment. A chunk of no more then the requested chunk length will be provided.

Parameters:
hBuf --

Handle to a buffer, previously returned by
BUF_alloc(), from which a chunk of data is being
requested.

pChunkLength --
Pointer to memory containing the number of octets
being requested in the chunk. This value may be
zero, to indicate that a pointer to as many
octets as possible should be returned.

ppData --
A pointer to a location in which a pointer to the
data in the chunk is placed. Also, the value
pointed to by pChunkLength is updated to contain
the length of data being provided. This value
may equal the requested chunk length, or may be
less then that length.

Returns:

Success or ResourceError or one of the BUF_RC_* return
codes.

6.15.6 Append a String to a Buffer
ReturnCode

112 CHAPTER 6. OPEN C PLATFORM

BUF_appendChunk(void * hBuf,
STR_String string);

Append a string to the end of a buffer. This function is primarily for use when receiving data from the network,
which is to later be parsed.

Parameters:
hBuf --

Handle to a buffer, previously returned by
BUF_alloc(), to which a chunk of data is to be
added.

string --
String to be appended to the buffer.

Returns:
Success or ResourceError.

6.15.7 Append One Buffer to Another
ReturnCode
BUF_appendBuffer(void * hBuf,

void * hAppendThisBuf);

This function appends one buffer to another. The internal buffer pointers are left in such a state as to allow
appending additional octets.

Parameters:
hBuf --

Handle to the buffer, previously returned by
BUF_alloc(), in which space is being requested.

hAppendThisBuf --
Handle to the buffer, previous returned by
BUF_alloc(), which is to be appended to hBuf.

Returns:

Currently, this function always returns Success.

6.15.8 Reset Buffer Pointers
void
BUF_resetParse(void * hBuf);

Reset the internal buffer pointers for another parse of the buffer.

6.15. BUFFER (BUF) 113

Parameters:

hBuf --
Handle to a buffer, previously returned by
BUF_alloc(), which is to be freed.

Returns:
Nothing.

6.15.9 Copy a Buffer

ReturnCode
BUF_copy(void * hBufSrc,

void ** phBufDest);

Copy an entire buffer. All data is copied, so string data is independent of the source buffer (as opposed to the way
BUF cloneBufferPortion() works).

Parameters:

hBufSrc --
Handle to a buffer, previously returned by
BUF_alloc(), which contains the data to be copied

phBufDest --
Pointer to a buffer handle. A new buffer is allocated
by this function, the data from hBufSrc is copied to
it, and the location pointed to by this parameter is
set to be the new buffer handle.

Returns:
Success or ResourceError

6.15.10 Clone a Portion of a Buffer

ReturnCode
BUF_cloneBufferPortion(void * hBuf,

OS_Uint32 len,
OS_Boolean bStripClonedPortion,
void ** phNewBuf);

Clone a portion of a buffer. A new buffer handle is provided, that contains a (possibly) partial list of the segments
from the cloned buffer. The new buffer and original buffer may each be freed or manipulated independently, with the
caveat that the String Data pointed to by the segments is the same in both buffers. Any modifications to the data within
the cloned buffer that is in the common portion to the original buffer will be reflected in both buffers.

114 CHAPTER 6. OPEN C PLATFORM

Parameters:
hBuf --

Handle to a buffer, previously returned by
BUF_alloc(), a portion of which is to be cloned.

len --
Length of data, beginning at the current location
within the buffer indicated by hBuf, which is to
be cloned. If len is BUF_REMAINDER, the buffer
portion beginning at the current buffer pointer
and ending at the end of the buffer is cloned.

bStripClonedPortion --
If TRUE, update the start of the data in the buffer
to be just beyond the cloned portion.

phNewBuf --
Pointer to location to put the handle of the new
cloned buffer.

Returns:
Success or ResourceError.

6.15.11 Get the Length of a Buffer

OS_Uint32
BUF_getBufferLength(void * hBuf);

Determine the length of the buffer, by adding the lengths of the data strings of each of the buffer segments.

Parameters:
hBuf --

Handle to a buffer, previously returned by
BUF_alloc(), a portion of which is to be cloned.

Returns:
The length of the buffer.

6.15.12 Display a Buffer

void
BUF_dump(void * hBuf, char * pMsg);

Display, on STDOUT, the entire contents of the buffer.

6.16. CONFIGURATION MODULE (CFG) 115

6.16 Configuration Module (CFG)

#include ‘‘config.h’’

ReturnCode
CONFIG_open(char * pFileName,

void ** phConfig);

void
CONFIG_close(void * hConfig);

ReturnCode
CONFIG_nextSection(void * hConfig,

char ** ppSectionName,
void ** phSection);

ReturnCode
CONFIG_nextParameter(void * hConfig,

char * pSectionName,
char ** ppTypeName,
char ** ppValue,
void ** phParameter);

ReturnCode
CONFIG_getNumber(void * hConfig,

char * pSectionName,
char * pTypeName,
OS_Uint32 * pValue);

ReturnCode
CONFIG_getString(void * hConfig,

char * pSectionName,
char * pTypeName,
char ** ppValue);

ReturnCode
CONFIG_setNumber(void * hConfig,

char * pSectionName,
char * pTypeName,
OS_Uint32 value,
CONFIG_Permanence permanence);

ReturnCode
CONFIG_setString(void * hConfig,

char * pSectionName,

116 CHAPTER 6. OPEN C PLATFORM

char * pTypeName,
char * pValue,
CONFIG_Permanance permanance);

The Configuration Module (CFG) provides a set of functions for reading and writing configuration data. The data
can be maintained in a file, or can be set on a temporary basis for use during an iteration of the program, or until the
data is re-read from the file.

A CFG configuration file contains one or more Sections, each of which contain one or more Parameters. Parameters
are pairs of Types and Values.

section a
parameterx.type parameterx.value
parametery.type parametery.value

.

.

.
section b

parameteri.type parameteri.value
parameteri.type parameteri.value

.

.

.

For examples of configuration file formats for various environments see Chapter 8, Implementations of the Plat-
form.

6.16.1 Open and Close a Configuration File
ReturnCode
CONFIG_open(char * pFileName,

void ** phConfig);

void
CONFIG_close(void * hConfig);

CONFIG open opens the configuration file specified by pFileName and places a file handle in the location pointed
to by phConfig. CONFIG close closes the previously opened configuration file with the handle hConfig.

CONFIG open has the following possible return values:

• Success

• ResourceError Out of memory

• UnsupportedOption Unsupported/unrecognized configuration data

• OS RC NoSuchFile Couldn’t open the configuration file

6.16. CONFIGURATION MODULE (CFG) 117

6.16.2 Get a Section
ReturnCode
CONFIG_nextSection(void * hConfig,

char ** ppSectionName,
void ** phSection);

Returns:
Success
Fail

CONFIG nextSection scans the configuration file pointed to by hConfig for the next Section and returns a pointer
to the character string containing the section name in ppSectionName.

phSectionis a Handle indicating where to begin the search. If the location pointed to by this parameter contains
NULL (i.e. *phSection == NULL) then the first section in the configuration file will be returned. Upon return from
this function, *phSection is updated with a new value. If this value of phSection is passed to this function again (with
the same section name), the next section in the configuration file will be returned.

6.16.3 Get a Parameter
ReturnCode
CONFIG_nextParameter(void * hConfig,

char * pSectionName,
char ** ppTypeName,
char ** ppValue,
void ** phParameter);

Returns:
Success
Fail

CONFIG nextParameter scans the configuration file pointed to by hConfig, under the section pSectionName for the
next occurrence of a Parameter. It then places a pointer to the string containing the Parameter’s Type in ppTypeName
and a pointer to the string containing the Parameter’s Value in ppValue.

phParameter is a Handle indicating where to begin the search. If the location pointed to by this parameter contains
NULL (i.e. *phParameter == NULL) then the first Parameter in the specified Section will be returned. Upon return
from this function, *phParameter is updated with a new value. If this value of phParameter is passed to this function
again (with the same section name), the next parameter in the specified Section will be returned.

6.16.4 Operate on Parameter Values
#define CONFIG_MAX_PARAMETER_LEN 1024

ReturnCode
CONFIG_getNumber(void * hConfig,

char * pSectionName,
char * pTypeName,
OS_Uint32 * pValue);

118 CHAPTER 6. OPEN C PLATFORM

ReturnCode
CONFIG_getString(void * hConfig,

char * pSectionName,
char * pTypeName,
char ** ppValue);

ReturnCode
CONFIG_setNumber(void * hConfig,

char * pSectionName,
char * pTypeName,
OS_Uint32 value,
CONFIG_Permanance permanance);

ReturnCode
CONFIG_setString(void * hConfig,

char * pSectionName,
char * pTypeName,
char * pValue,
CONFIG_Permanance permanance);

Returns:
Success
Fail

The facilities CONFIG getNumber, CONFIG getString, CONFIG setNumber, and CONFIG setString operate on
Paramter Values.

CONFIG getNumber and CONFIG getString read a configuration file and return an unsigned 32 bit integer or a
pointer to a string, respectively.

CONFIG setNumber and CONFIG setString take an unsigned 32 bit integer or a pointer to a string, respectively,
as input and write their values to a configuration file.

In all cases the configuration file is pointed to by hConfig, a configuration handle previously returned by CON-
FIG openFile. The Parameter is taken from the Section indicated by pSectionName. The Paramter Type to search for
is given by pTypeName. (Section and Parameter names have white space stripped from them.)

CONFIG getNumber returns its result in the location pointed to by pValue.
CONFIG getString returns its result in the location pointed to by ppValue. The returned Value pointer points to

static data. Do not modify the data pointed to by the returned Parameter.
CONFIG setNumber assigns value to the specified Section/Type.
CONFIG setString assigns pValue the specified Section/Type.
Note: Paramter Values may be no longer than 1024 bytes.

6.16.5 Permanance
typedef enum
{

CONFIG_Permanent,
CONFIG_ThisExecution,
CONFIG_Transient

6.17. SUBSCRIBER PROFILE MODULE (PROFILE) 119

} CONFIG_Permanance;

This module does not yet write to the configuration file. The file should be created by hand, for now. For this
reason, the PERMANANCE values have no meaning at this time.

For CONFIG setNumber and CONFIG setString, if permanance is set to CONFIG Permanent, rewrite the con-
figuration file with this new value assigned to the specified Section/Type. If CONFIG ThisExecution, this value is
”local” to the current run-time environment, and returns to the value saved in the file upon program termination or
upon a call to CONFIG close. If permanance is set to CONFIG Transient, this value is ”local to the current run-time
environment, and returns to the value saved in the file upon re-reading of the configuration file (not yet implemented),
or upon a call to CONFIG close.

6.17 Subscriber Profile Module (PROFILE)
#include ‘‘profile.h’’

ReturnCode
PROFILE_open(char * pProfileName,

void ** phProfile);

void
PROFILE_close(void * hProfile);

ReturnCode
PROFILE_addAttribute(void * hProfile,

char * pAttributeName,
OS_Uint32 type,
OS_Boolean (* pfEqual)(char * pValue1,

char * pValue2,
OS_Uint32 type));

ReturnCode
PROFILE_searchByAttribute(void * hProfile,

char * pAttributeName,
char * pSearchValue,
void ** phSearch);

ReturnCode
PROFILE_searchByType(void * hProfile,

OS_Uint32 type,
char * pSearchValue,
void ** phSearch);

ReturnCode

120 CHAPTER 6. OPEN C PLATFORM

PROFILE_getAttributeValue(void * hProfile,
void * hSearch,
char * pAttributeName,
char ** ppValue);

The PROFILE module constructs searchable Profiles from Profile libraries. As shown in the following diagram,
a Profile is a set of Attributes and Attribute Values. The same set of Attributes may apply to different Entities. Each
Entity may use different Values for the same set of Attributes.

entity_i
attribute_1 value_a
attribute_2 value_b

.

.

.

entity_j
attribute_1 value_x
attribute_2 value_y

.

.

.

Each Attribute is assigned a Type by the user. When searching Profiles, searches may be issued based on finding a
particular Attribute with a particular Value, or on finding a particular Value within any Attribute which is of a specified
Type.

6.17.1 Open and Close a Profile Library
ReturnCode
PROFILE_open(char * pProfileName,

void ** phProfile);
Returns:

Success
ResourceError
<depending upon the implementation, other non-Success Values>

void
PROFILE_close(void * hProfile);

PROFILE open opens the Profile library hProfile. In some portations, this may be a file name. phProfile is a
pointer to a location in which a handle for this Profile Library will be placed.

PROFILE close releases resources allocated on behalf of the user, for accessing a Profile library. hProfile is a
handle to a Profile Library, previously provided by PROFILE open.

6.17. SUBSCRIBER PROFILE MODULE (PROFILE) 121

6.17.2 Add an Attribute to a Profile
ReturnCode
PROFILE_addAttribute(void * hProfile,

char * pAttributeName,
OS_Uint32 type,
OS_Boolean (* pfEqual)(char * pValue1,

char * pValue2,
OS_Uint32 type));

Returns:
Success
Fail

PROFILE addAttribute adds an Attribute contained in a Profile library to a searchable, local list of Attributes. It
is not necessary to add all Attributes in the library to this list. Only those Attributes of concern to the application
making this call need be added. These Attributes are the ones that will be searched by PROFILE searchByAttribute
and PROFILE searchByType.

There is one exception to the above rule. The ”key” Attribute must be added, and must be the very first Attribute
added. The key field is, in this INI-file-based implementation, the INI Section name (in square brackets). In a real
database implementation, there would be a primary key, possibly some secondary keys (irrelavent to a profile), and a
bunch of record attributes.

hProfile A handle to a Profile library, previously provided by PROFILE open.

pAttributeName The name of an Attribute within the Profile library.

type A caller-defined value defining the Type of the Attribute. If multiple Attributes have the same Type, then PRO-
FILE searchByType will search all of those Attributes for a particular Value.

Note: The caller-defined portion of this Value is the low-order 31 bits. The high-order bit is reserved for OR-ing
with PROFILE MULTIVALUE. See the following section.

pfEqual A pointer to a function which is called, during searches, to compare the specified search Value against the
Attribute Value in the profile. This function need not be a simple string compare. For example, in comparing
an email address, we want to do case-insensitive string compares. In other cases, the user of the profile package
might want to strip out some of the information in one or the other of the strings prior to doing the comparison.

PROFILE MULTIVALUE

If an Attribute Type has the PROFILE MULTIVALUE bit set, the Attribute name will have a space with sequential
numbers appended to it in order to create a list of values for that attribute. If, for example, for the attribute ATTR ID,
PROFILE addAttribute() is called as follows:

rc = PROFILE_addAttribute(hProfile,
"Id",
ATTR_ID | PROFILE_MULTIVALUE,
compareFunction);

122 CHAPTER 6. OPEN C PLATFORM

when PROFILE searchByAttribute() is called (see below), multiple attributes will be searched for. The attribute
names will be:

Id 1
Id 2

.

.

.

The search will complete when a match is found, or no more attributes in the set of Values are found.

6.17.3 Search a Profile
ReturnCode
PROFILE_searchByAttribute(void * hProfile,

char * pAttributeName,
char * pSearchValue,
void ** phSearch);

ReturnCode
PROFILE_searchByType(void * hProfile,

OS_Uint32 type,
char * pSearchValue,
void ** phSearch);

Returns:
Success
Fail

PROFILE searchByAttribute searches the specified Profile for an Entity that contains a particular Attribute match-
ing a specified Value.

PROFILE searchByType searches the specified Profile for an Entity that contains any Attribute with the specified
Type, matching a specified Value.

In both cases, the search is sequential, so if there is more than one possible search outcome only the first one is
returned.

hProfile Handle to a Profile library, previously provided by PROFILE open.

pAttributeName Name of the Attribute which is to be compared to the search Attribute Value.

type Value specifying the Attribute types to be scanned for the specified search Value.

pSearchValue Attribute Value to be searched for.

phSearch Pointer to a location in which a search handle is placed upon successful completion of this function. This
search handle points to an Entity and may be passed to PROFILE getAttributeValue() to obtain other Attributes
from the Entity found in this search.

6.18. ABSTRACT SYNTAX NOTATION (ASN) 123

6.17.4 Get an Attribute Value
ReturnCode
PROFILE_getAttributeValue(void * hProfile,

void * hSearch,
char * pAttributeName,
char ** ppValue);

Returns:
Success
Fail

PROFILE getAttributeValue obtains Attribute Values from the Entity determined by PROFILE searchByAttribute
or PROFILE searchByType.

Profile Handle to a Profile library, previously provided by PROFILE open.

hSearch Search handle, previously provided by PROFILE searchByAttribute or PROFILE searchByType.

pAttributeName Name of the Attribute whose Value is desired.

ppValue Pointer to the location in which a pointer to the character string representation of the requested Value is
placed.

6.18 Abstract Syntax Notation (ASN)

#include ‘‘asn.h’’

ReturnCode
ASN_init(void);

ReturnCode
ASN_format (

ASN_EncodingRules encRules,
void * pTab,
void * hBuf,
void * pCStruct,
OS_Uint32 * pFormattedLength);

ReturnCode
ASN_parse(

ASN_EncodingRules encRules,
void * pTab,
void * hBuf,
void * pCStruct,

124 CHAPTER 6. OPEN C PLATFORM

OS_Uint32 * pduLength);

ReturnCode
ASN_newTableEntry (

ASN_TableEntry ** ppTab,
ASN_TableEntryType type,
OS_Uint8 itemTag,
QU_Head * pQ,
unsigned char * pBase,
void * pExists,
void * pData,
char * pDebugMessage);

void
ASN_printTree (

ASN_TableEntry * pTab,
void * pCStruct,
OS_Boolean printValues);

/* Macro */
ASN_NEW_TABLE (pTab, type, itemTag, pQ, pCStruct, pExists, \

pData, pMessage, debugParamList)

ASN.1 (Abstract Syntax Notation One, CCITT X.208) is used extensively by ISO protocols to describe data
structures in an manner independent of implementation. There are three aspects of ASN.1 handled by this module:
the specification of the data, the encoding of the data and the decoding of the data.

The ASN.1 data has two representations in the ASN Module. The internal representation is a machine-dependent
data structure which contains the ASN.1 tag, type, length and text used for debug messages; as well as the data
in processor’s native format and a link to the next element. The external representation is the PDU, which is a
byte-stream encoding of the data into a format which is machine-independent and suitable for transmission between
protocol layers. At this time, only the Basic Encoding Rules (BER, X.209) are defined in the module, but support for
Packed Encoding Rules (PER) is a likely addition.

For each PDU to be used by the protocol, a table is created, containing the structure defined by the protocol. This
table is then used by ASN format() and ASN parse() functions as described below. The table is constructed by calling
the macro ASN NEW TABLE(...), then calling the function ASN newTableEntry(...) for each element of the PDU.

The decoding of a PDU into a table allows received data to be used by the receiving layer. This is done with the
ASN parse(...) function.

The encoding of a table into a PDU allows the data to be written into a byte-stream for transmission to another
layer. It is done with the ASN format(...) function.

6.18.1 Trace Flags
Tracing of the ASN.1 encoding/decoding may be turned on with the following trace flags:

TM ASN ERROR Display ASN error messages

6.18. ABSTRACT SYNTAX NOTATION (ASN) 125

TM ASN WARNING Display ASN warning messages

TM ASN FLOW Selected points in the program flow

TM ASN TABLE Print a message when the en/decoding of a table begins

TM ASN ELEMENT Print a message when each element of a table is encoded or decoded

TM ASN DATA Print the value of elements as they are encoded or decoded

6.18.2 Functions

ASN tableEntry(...) adds a entry to the given table, with the specified tag, type and value.
The ASN parse(...) function accepts a PDU as input and fills in the internal data structure with the data from the

PDU, using the specified encoding rules.

6.18.3 Functions

The ASN format(...) function accepts an internal table as input and outputs a PDU suitable for network transmission.
Again, the specified encoding rules are used.

6.18.4 ASN tableEntry Declaration

typedef struct ASN_TableEntry
{

QU_ELEMENT;
ASN_TableEntryType type;
OS_Uint8 tag;
OS_Uint32 minimum;
OS_Uint32 maximum;
OS_Uint32 existsOffset;
OS_Uint32 dataOffset;
OS_Uint32 maxDataLength;
OS_Uint32 elementSize;
char * pDebugMessage;
struct { QU_HEAD; } tableList;

} ASN_TableEntry;

When a PDU is to be formatted, the table is scanned, and data is taken from the C structure and placed, according
to the specified set of encoding rules, into the PDU. Similarly, when a PDU is to be parsed, the PDU is scanned, and
the elements are placed into the C structure in their appropriate locations.

The file sdp+fs/lsm/envcomp.c contains a complete example of building a table for formatting and parsing of LSM
Envelope PDUs.

126 CHAPTER 6. OPEN C PLATFORM

6.19 Finite State Machine (FSM)

Void FSM_init(Void)

FSM_createMachine(FSM_UserData *userData)
FSM_deleteMachine(FSM_Machine *machine)

FSM_runMachine(FSM_Machine *machine, FSM_EventId evtId)

FSM_UserData *FSM_getUserData(FSM_Machine *machine)
Void FSM_setUserData(FSM_Machine *machine)

FSM_generateEvent (FSM_Machine *machine, FSM_EventId evtId)

Void
FSM_TRANSDIAG_init (void);

FSM_TRANSDIAG_TransDiag
FSM_TRANSDIAG_create (String transDiagName, FSM_State *initialState)

SuccFail
FSM_TRANSDIAG_load (FSM_Machine *machine, FSM_TRANSDIAG_TransDiag *transDiag)

SuccFail
FSM_TRANSDIAG_resetMachine (FSM_Machine *machine)

This module is used to implement Mealy-model finite state machines. The functions of this module let you create
a machine, assign your specific data to the machine, and associate the machine with one or more transition diagrams.

A classic state transition diagram has four components: states, transition arcs, events, and actions. In the FSM
module a state is represented by an instance of the FSM State data structure. A transition arc is represented by an
instance of the FSM Trans data structure. These two structures are defned as follows:

typedef struct FSM_State {
Int (*entry)(FSM_Machine *machine,

FSM_UserData *userData,
FSM_EventId evtId);

Int (*exit)(FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);

struct FSM_Trans *trans;
String name;

} FSM_State;

6.19. FINITE STATE MACHINE (FSM) 127

typedef struct FSM_Trans {
FSM_EventId evtId;
Bool (*predicate)(FSM_Machine *machine,

FSM_UserData *userData,
FSM_EventId evtId);

Int (*action)(FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);

FSM_State *nextStatePtr;
String name;

} FSM_Trans;

The FSM State structure contains the following members:

entry The function called when the state is entered

exit The function called when the state is exited

trans The transition diagram associated with the state. This is the diagram that defines the events that can result in
transition to another state.

name A String containing the name of the state

The FSM Trans structure contains the following members:

evtId The event that causes the transition to occur

predicate The predicate function (see below)

action The function that is called when the transition is actually taken

nextStatePtr The state to transition to

name A String containing the name of the transition

As seen in the above structures, each transition can have a predicate function. When an event occurs, if there is
a predicate function associated with the transition, it is called first. If the predicate function’s return value is TRUE,
the action function is called. If no predicate is associated with a transition, the action function is called as soon as the
event is matched. The predicate function may generate events using FSM_generateEvent function.

Two examples at the end of this section show you how to define and use these structures.

6.19.1 State Machine Functions
Void
FSM_init(Void)

This function initializes FSM tracing, if active, and should be called at the start of a user program.

FSM_createMachine(FSM_UserData *userData)
FSM_deleteMachine(FSM_Machine *machine)

128 CHAPTER 6. OPEN C PLATFORM

This function creates a finite state machine.
FSM_createMachine allocates memory for a state machine and assigns the user data, which is passed to it as an

argument, to the state machine.

FSM_runMachine(FSM_Machine *machine, FSM_EventId evtId)

This function processes an event. The machine identifier and event id are passed to the function. This function
compares the given event with the events associated with the current state of the finite state machine to find the
transition function and call it. In the case of an event match, if there is a predicate associated with the transition, the
predicate function is called first and based on the result of the predicate function, the transition function is called. If
there is no predicate associated with the transition, the transition function associated with the matched event is called
unconditionally.

FSM_UserData *FSM_getUserData(FSM_Machine *machine)
Void FSM_setUserData(FSM_Machine *machine)

These functions get and set user specific data for a given machine respectively.

FSM_generateEvent (FSM_Machine *machine, FSM_EventId evtId)

This function generates an event for the finite state machine. The machine and the identifier of the event to be
generated are passed to the function. The given event is not processed by this function, but instead is scheduled (by
OCP’s scheduler module) for later execution.

6.19.2 Transition Diagram Functions
Void
FSM_TRANSDIAG_init (void);

This function initializes the transition diagram queue head pointer and should be called at the start of a user
program.

FSM_TRANSDIAG_TransDiag
FSM_TRANSDIAG_create (String transDiagName, FSM_State *initialState)

This function creates a transition diagram and assigns its name and initial state, which are passed to it as arguments.
The return value is a pointer to a transition diagram if the function is successful and NULL if the function can not
allocate memory.

SuccFail
FSM_TRANSDIAG_load (FSM_Machine *machine, FSM_TRANSDIAG_TransDiag *transDiag)

This function assigns a transition diagram to a previously created finite state machine. You can load different
transition diagrams at will, but the last one that was loaded is in effect at any point of time.

SuccFail
FSM_TRANSDIAG_resetMachine (FSM_Machine *machine)

This function resets a finite state machines to the initial state of the transition diagram which was previously
assigned to it.

6.19. FINITE STATE MACHINE (FSM) 129

6.19.3 FSM Usage Examples
The following two examples show how the FSM module is used. The first example is a simple one and second one is
more complex. The state diagram in the beginning of each example shows what the example is about.

/*+
* File: fsm ex.h
*
* Description:
* This File contains the definititions related to the Finite State
* Machine of FSM example. Represented by the Module Identifer FSM .
*

-*/
10

#ifndef FSMEX H
#define FSMEX H

#include "extfuncs.h"

/* User Action Primitives */
#define fsmex EvtIdleTo1 2
#define fsmex Evt1ToIdle 3
#define fsmex Evt1To2 4
#define fsmex Evt2ToIdle 5 20

extern FSM State fsmex sIdle;
extern FSM State fsmex s1;
extern FSM State fsmex s2;

STATIC FSM Trans fsmex tIdle[]= {
{fsmex EvtIdleTo1, (Bool(*)())0, tr idleTo1, &fsmex s1, "F:IdleTo1"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex sIdle, "I:BadEventIgnored"} };

PUBLIC FSM State fsmex sIdle = { 30
fsm ePass,
fsm xPass,
fsmex tIdle,
"Idle-State"};

STATIC FSM Trans fsmex t1[]= {
{fsmex Evt1ToIdle, (Bool(*)())0, tr 1ToIdle, &fsmex sIdle, "F:1ToIdle"},
{fsmex Evt1To2, (Bool(*)())0, tr 1To2, &fsmex s2, "F:1To2"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex s1, "I:BadEventIgnored"} };

40
PUBLIC FSM State fsmex s1 = {

fsm ePass,
fsm xPass,
fsmex t1,
"State-1"};

STATIC FSM Trans fsmex t2[]= {
{fsmex Evt2ToIdle, (Bool(*)())0, tr 2ToIdle, &fsmex sIdle, "F:2ToIdle"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex s2, "I:BadEventIgnored"} };

50
PUBLIC FSM State fsmex s2 = {

fsm ePass,

130 CHAPTER 6. OPEN C PLATFORM

fsm xPass,
fsmex t2,
"State-2"};

typedef union fsmex EventInfo {

struct evt1 {
Int field1; 60
Int field2;

} evt1;

struct evt2 {
Int field1;
Int field2;

} evt2;

} fsmex EventInfo;
70

fsmex EventInfo fsmex evtInfo; /* Global data for all FSM handlers */

#endif

/*+
* File name: fsm ex.c (FSM Example)
*
* Description: (Example program for FSM module)
*
*
* / Idle \
* \ /\
* /\ /\ \ 10
* / \ \
* / \ \
* / \ \/
*
* /State 2\<—– /State 1\
* \ / \ /
*
*
* Functions:
* fsmex transDiag (void) 20
* fsm eError (Void *machine, Void *userData, FSM EventId evtId)
* tr badEventIgnore(Void *machine, Void *userData, FSM EventId evtId)
*
* fsm ePass(Void *machine, Void *userData, FSM EventId evtId)
* fsm xPass(Void *machine, Void *userData, FSM EventId evtId)
* Int tr idleTo1(Void *machine, Void *userData, FSM EventId)
* Int tr 1ToIdle(Void *machine, Void *userData, FSM EventId)
* Int tr 1To2(Void *machine, Void *userData, FSM EventId)
* Int tr 2ToIdle(Void *machine, Void *userData, FSM EventId)
* 30
* fsm e Invoked when ENTERING a state.
* fsm x Invoked when EXITING a state.
* fsm a Invoked as ACTION of a transition.
* fsm t TRANSITION specificatin.

6.19. FINITE STATE MACHINE (FSM) 131

* fsm s STATE specification.
-*/

#ifdef RCS VER /*{*/
static char rcs[] = "$Id: fsmExc.c,v 1.1 2008/01/07 01:04:31 mohsen Exp $";
#endif /*}*/ 40

#include "estd.h"
#include "eh.h"
#include "queue.h"
#include "sch.h"

#include "fsm.h"
#include "fsmtrans.h"
#include "fsm_ex.h"
#include "extfuncs.h" 50

Void
main(int argc, char **argv)
{

int c;
extern char *optarg;
extern int optind;

Void *machine; 60
Void *transDiag;

typedef struct UserData {
char name[20];

} UserData;

UserData userData = {"Example program"};

TM INIT();
70

while ((c = getopt(argc, argv, "T:t:")) != EOF) {
switch (c) {

#ifdef TM ENABLED
case ’T’:

TM setUp(optarg);
break;

#endif
}

} 80

SCH init(100);

FSM init();

FSM TRANSDIAG init();

if (! (transDiag = FSM TRANSDIAG create("fsmExTransDiag", &fsmex sIdle))) {
EH problem("main: FSM_TRANSDIAG_create failed");
exit(13); 90

}

132 CHAPTER 6. OPEN C PLATFORM

machine = FSM createMachine(&userData);

FSM TRANSDIAG load(machine, transDiag);

FSM TRANSDIAG resetMachine(machine);

{ 100
int i;
static FSM EventId event[5] = {

fsmex EvtIdleTo1,
fsmex Evt1To2,
fsmex Evt2ToIdle,
−1

/* fsmex Evt1ToIdle, */
};

for (i = 0; event[i] != −1; i++) { 110
FSM runMachine(machine, event[i]);

}

FSM deleteMachine(machine);
SCH block();
SCH run();

}
}

Int 120
tr idleTo1(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_idleTo1: Transition: %s\n",
FSM getUserData(machine)));

return 0;
}

Int
tr 1ToIdle(Void *machine, Void *userData, FSM EventId eventId)
{ 130

TM TRACE((FSM modCB, FSM TMFUNC, "tr_1ToIdle: Transition: %s\n",
FSM getUserData(machine)));

return 0;
}

Int
tr 1To2(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_1To2: Transition: %s\n",
FSM getUserData(machine))); 140

return 0;
}

Int
tr 2ToIdle(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_2ToIdle: Transition: %s\n",
FSM getUserData(machine)));

6.19. FINITE STATE MACHINE (FSM) 133

return 0;
} 150

/*<
* Function: tr badEventIgnore
*
* Description: Bad event is ignored.
*
* Arguments: State machine, event id.
*
* Returns: 0 if completed successfule, -1 otherwise. 160
*
>*/

Int
tr badEventIgnore(Void *machine, Void *userData, FSM EventId evtId)
{

EH problem("tr_badEventIgnore: Bad Event Ignored\n");
return (SUCCESS);

}
170

/*<
* Function: fsm ePass
*
* Description: Invoked when entering a state.
*
* Arguments: State machine, event id.
*
* Returns: 0 if completed successfule, -1 otherwise.
* 180
>*/

Int
fsm ePass(Void *machine, Void *userData, FSM EventId evtId)
{

TM TRACE((FSM modCB, FSM TMFUNC,
"fsm_ePass: machine=0x%x evtId=0x%x\n", machine, evtId));

return (SUCCESS);
} 190

/*<
* Function: fsm xPass
*
* Description: Invoked when exiting a state.
*
* Arguments: State machine, event id.
* 200
* Returns: 0 if completed successfule, -1 otherwise.
*
>*/

Int

134 CHAPTER 6. OPEN C PLATFORM

fsm xPass(Void *machine, Void *userData, FSM EventId evtId)
{

TM TRACE((FSM modCB, FSM TMFUNC,
"fsm_xPass: machine=0x%x evtId=0x%x\n", machine, evtId));

210
return (SUCCESS);

}

/*+
* File: fsm ex.h
*
* Description:
* This File contains the definititions related to the Finite State
* Machine of FSM example. Represented by the Module Identifer FSM .
*

-*/

#ifndef FSMEX H 10
#define FSMEX H

#include "extfuncs.h"

/* User Action Primitives */
#define fsmex EvtIdleTo1 2
#define fsmex Evt1ToIdle 3
#define fsmex Evt1To2 4
#define fsmex Evt2ToIdle 5
#define fsmex Evt1To3 6 20
#define fsmex Evt3ToIdle 7

extern FSM State fsmex sIdle;
extern FSM State fsmex s1;
extern FSM State fsmex s2;
extern FSM State fsmex s3;

STATIC FSM Trans fsmex tIdle[]= {
{fsmex EvtIdleTo1, (Bool(*)())0, tr idleTo1, &fsmex s1, "F:IdleTo1"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex sIdle, "I:BadEventIgnored"} }; 30

PUBLIC FSM State fsmex sIdle = {
fsm ePass,
fsm xPass,
fsmex tIdle,
"Idle-State"};

STATIC FSM Trans fsmex t1[]= {
{fsmex Evt1ToIdle, (Bool(*)())0, tr 1ToIdle, &fsmex sIdle, "F:1ToIdle"},
{fsmex Evt1To2, (Bool(*)())0, tr 1To2, &fsmex s2, "F:1To2"}, 40
{fsmex Evt1To3, (Bool(*)())0, tr 1To3, &fsmex s3, "F:1To3"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex s1, "I:BadEventIgnored"} };

PUBLIC FSM State fsmex s1 = {
fsm ePass,
fsm xPass,
fsmex t1,

6.19. FINITE STATE MACHINE (FSM) 135

"State-1"};

STATIC FSM Trans fsmex t2[]= { 50
{fsmex Evt2ToIdle, (Bool(*)())0, tr 2ToIdle, &fsmex sIdle, "F:2ToIdle"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex s2, "I:BadEventIgnored"} };

PUBLIC FSM State fsmex s2 = {
fsm ePass,
fsm xPass,
fsmex t2,
"State-2"};

STATIC FSM Trans fsmex t3[]= { 60
{fsmex Evt3ToIdle, (Bool(*)())0, tr 3ToIdle, &fsmex sIdle, "F:3ToIdle"},
{FSM EvtDefault, (Bool(*)())0, tr badEventIgnore, &fsmex s3, "I:BadEventIgnored"} };

PUBLIC FSM State fsmex s3 = {
fsm ePass,
fsm xPass,
fsmex t3,
"State-3"};

typedef union fsmex EventInfo { 70

struct evt1 {
Int field1;
Int field2;

} evt1;

struct evt2 {
Int field1;
Int field2;

} evt2; 80

} fsmex EventInfo;

fsmex EventInfo fsmex evtInfo; /* Global data for all FSM handlers */

#endif

/*+
* File name: fsm ex2.c (FSM Example)
*
* Description: (Example program for FSM module)
*
* In this example, the following state machine follows the following path:
* Idle -> S1 -> S2 -> Idle -> S1 -> S3 -> Idle
*
* Selection of either S1->S2 or S1->S3 when in state 1, is based on an
* internal event generated in transition from Idle to S1. 10
*
*
* —–>/ Idle \<—–
* / \ / \
* / /\ | \
* / | | \

136 CHAPTER 6. OPEN C PLATFORM

* / | | \
* / | \/ \
*
* /State 2\<—– /State 1\—–>/State 3\ 20
* \ / \ / \ /
*
*
* Functions:
* fsmex transDiag (void)
* fsm eError (Void *machine, Void *userData, FSM EventId evtId)
* tr badEventIgnore(Void *machine, Void *userData, FSM EventId evtId)
*
* fsm ePass(Void *machine, Void *userData, FSM EventId evtId)
* fsm xPass(Void *machine, Void *userData, FSM EventId evtId) 30
* Int tr idleTo1(Void *machine, Void *userData, FSM EventId)
* Int tr 1ToIdle(Void *machine, Void *userData, FSM EventId)
* Int tr 1To2 (Void *machine, Void *userData, FSM EventId)
* Int tr 2ToIdle(Void *machine, Void *userData, FSM EventId)
* Int tr 1To3 (Void *machine, Void *userData, FSM EventId)
* Int tr 3ToIdle(Void *machine, Void *userData, FSM EventId)
*
* fsm e Invoked when ENTERING a state.
* fsm x Invoked when EXITING a state.
* fsm a Invoked as ACTION of a transition. 40
* fsm t TRANSITION specificatin.
* fsm s STATE specification.
* G heartBeat(void)

-*/

#ifdef RCS VER /*{*/
static char rcs[] = "$Id: fsmEx2c.c,v 1.1 2008/01/07 01:04:31 mohsen Exp $";
#endif /*}*/

#include "estd.h" 50
#include "eh.h"
#include "queue.h"
#include "sch.h"

#include "fsm.h"
#include "fsmtrans.h"
#include "fsm_ex2.h"
#include "extfuncs.h"

extern Int G heartBeat(void); 60

Void
main(int argc, char **argv)
{

int c;
extern char *optarg;
extern int optind;

Void *transDiag; 70
Void *machine;

typedef struct UserData {

6.19. FINITE STATE MACHINE (FSM) 137

char name[20];
} UserData;

UserData userData = {"Example program"};

TM INIT();
80

while ((c = getopt(argc, argv, "T:t:")) != EOF) {
switch (c) {

#ifdef TM ENABLED
case ’T’:

TM setUp(optarg);
break;

#endif
}

} 90

SCH init(100);

FSM init();

FSM TRANSDIAG init();

if (! (transDiag = FSM TRANSDIAG create("fsmExTransDiag", &fsmex sIdle))) {
EH problem("main: FSM_transDiag_create failed");
exit(13); 100

}

machine = FSM createMachine(&userData);

FSM TRANSDIAG load(machine, transDiag);

FSM TRANSDIAG resetMachine(machine);

{ 110
int i;
static FSM EventId event[5] = {

fsmex EvtIdleTo1,
fsmex Evt2ToIdle,
fsmex EvtIdleTo1,
fsmex Evt3ToIdle,
−1

/* fsmex Evt1ToIdle, */
};

120
for (i = 0; event[i] != −1; i++) {

FSM runMachine(machine, event[i]);

if (G heartBeat()) {
exit(13);

}
}

FSM deleteMachine(machine);
if (G heartBeat()) { 130

138 CHAPTER 6. OPEN C PLATFORM

exit(13);
}

}
}

Int
tr idleTo1(Void *machine, Void *userData, FSM EventId eventId)
{

static Bool firstTime = 1;
140

TM TRACE((FSM modCB, FSM TMFUNC, "tr_idleTo1: Transition: %s\n",
FSM getUserData(machine)));

if (firstTime) {
firstTime = 0;
FSM generateEvent(machine, fsmex Evt1To2);

} else {
FSM generateEvent(machine, fsmex Evt1To3);

}
150

return 0;
}

Int
tr 1ToIdle(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_1ToIdle: Transition: %s\n",
FSM getUserData(machine)));

return 0;
} 160

Int
tr 1To2(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_1To2: Transition: %s\n",
FSM getUserData(machine)));

return 0;
}

Int 170
tr 2ToIdle(Void *machine, Void *userData, FSM EventId eventId)
{

TM TRACE((FSM modCB, FSM TMFUNC, "tr_2ToIdle: Transition: %s\n",
FSM getUserData(machine)));

return 0;
}

Int
tr 1To3(Void *machine, Void *userData, FSM EventId eventId)
{ 180

TM TRACE((FSM modCB, FSM TMFUNC, "tr_1To3: Transition: %s\n",
FSM getUserData(machine)));

return 0;
}

Int
tr 3ToIdle(Void *machine, Void *userData, FSM EventId eventId)

6.19. FINITE STATE MACHINE (FSM) 139

{
TM TRACE((FSM modCB, FSM TMFUNC, "tr_3ToIdle: Transition: %s\n",

FSM getUserData(machine))); 190
return 0;

}

/*<
* Function: tr badEventIgnore
*
* Description: Bad event is ignored.
*
* Arguments: State machine, event id. 200
*
* Returns: 0 if completed successfule, -1 otherwise.
*
>*/

Int
tr badEventIgnore(Void *machine, Void *userData, FSM EventId evtId)
{

EH problem("tr_badEventIgnore: Bad Event Ignored\n");
return (SUCCESS); 210

}

/*<
* Function: fsm ePass
*
* Description: Invoked when entering a state.
*
* Arguments: State machine, event id.
* 220
* Returns: 0 if completed successfule, -1 otherwise.
*
>*/

Int
fsm ePass(Void *machine, Void *userData, FSM EventId evtId)
{

TM TRACE((FSM modCB, FSM TMFUNC,
"fsm_ePass: machine=0x%x evtId=0x%x\n", machine, evtId));

230
return (SUCCESS);

}

/*<
* Function: fsm xPass
*
* Description: Invoked when exiting a state.
* 240
* Arguments: State machine, event id.
*
* Returns: 0 if completed successfule, -1 otherwise.
*

140 CHAPTER 6. OPEN C PLATFORM

>*/

Int
fsm xPass(Void *machine, Void *userData, FSM EventId evtId)
{

TM TRACE((FSM modCB, FSM TMFUNC, 250
"fsm_xPass: machine=0x%x evtId=0x%x\n", machine, evtId));

return (SUCCESS);
}

/*<
* Function: G heartBeat
*
* Description: Heart Beat for the stack. 260
*
* Arguments: None.
*
* Returns: 0 on successful completion, -1 on unsuccessful completion.
*
>*/

SuccFail
G heartBeat(void)
{ 270

if (SCH block() < 0) {
EH fatal("main: SCH_block returned negative value");
return (FAIL);

}

SCH run();

return (SUCCESS);
}

280

6.20 User Datagram Protocol Point of Control & Observation (UDP PCO)

#include udp_pco.h

SuccFail
UDP_init(int number_of_SAPs)

UDP_SapDesc
UDP_sapBind(T_SapSel *sapSel,

int (*dataInd) (T_SapSel *remTsapSel,
N_SapAddr *remNsapAddr,
T_SapSel *locTsapSel,
N_SapAddr *locNsapAddr,

6.20. USER DATAGRAM PROTOCOL POINT OF CONTROL & OBSERVATION (UDP PCO) 141

DU_View data));

SuccFail
UDP_sapUnbind(TSapSel *sapSel)

SuccFail
UDP_dataReq(UDP_SapDesc locSapDesc,

T_SapSel *remTsapSel,
N_SapAddr *remNsapAddr,
DU_View udpSdu)

SuccFail
UDP_PO_init(String errFile,

String logFile)

SuccFail
UDP_PC_inhibit(Int direction,

Int next)

SuccFail
UDP_PC_lossy(Int direction,

Int percent)

The UDP PCO package provides a connectionless, non-blocking means for inter-process communication. Any
UDP PCO user may create a SAP (Service Access Point) via which other processes may communicate.

The UDP PCO package provides a simplified interface to the datagram sockets communication function. The
processes communicating need not be running on the same machine; they may be on any machine on the Internet.

The UDP PCO package provides points of control and observation at the N-1 interface of any UDP PCO user.
User data units can be logged for subsequent analysis during the software development process. User data units can
also be interrupted under program control to simulate the effects of a lossy network on a UDP PCO user.

6.20.1 Initializing the Package
SuccFail UDP_init(int number_of_SAPs)

This function initializes the UDP PCO package and creates space for the specified number of SAPs.

6.20.2 Creating a SAP
UDP_SapDesc
UDP_sapBind(T_SapSel *sapSel,

int (*dataInd) (T_SapSel *remTsapSel,
N_SapAddr *remNsapAddr,
T_SapSel *locTsapSel,
N_SapAddr *locNsapAddr,
DU_View data));

142 CHAPTER 6. OPEN C PLATFORM

This function creates a SAP and ”binds” the application to it. The SAP Selector is returned through the ’sapSel’
argument. The user-supplied function ’dataInd’ is called whenever data is received through this SAP. See below for a
description of this function’s parameters.

6.20.3 Removing a SAP
SuccFail UDP_sapUnbind(T_SapSel *sapSel)

This function removes (unbinds) a SAP.

6.20.4 Sending Data via a SAP
SuccFail
UDP_dataReq(UDP_SapDesc locSapDesc,

T_SapSel *remTsapSel,
N_SapAddr *remNsapAddr,
DU_View udpSdu)

This function sends data to the remote SAP specified by ’remTsapSel’, on the remote machine specified by ’remN-
sapAddr’. The data is contained in ’udpSdu’. See the DU module section for a description of the ’DU View’ data
structure.

6.20.5 Receiving Data via a SAP
int
(*dataInd) (T_SapSel *remTsapSel,

N_SapAddr *remNsapAddr,
T_SapSel *locTsapSel,
N_SapAddr *locNsapAddr,
DU_View data));

As discussed above, user data is received via a user-supplied function that is registered via the UDP bind facility.
This function is invoked by the UDP PCO module whenever it receives data addressed to the T SAP selector to which
the user function was bound.

’remTsapSel’ and ’remNsapAdd’ are the T SAP selector and N SAP address, respectively, of the data sender.
’locTsapSel’ and ’locNsapAdd’ are reserved for future use. Do not rely on their values.

The received data is contained in ’data’. See the DU module section for a description of the ’DU View’ data
structure.

6.20.6 Logging User Data
#ifdef UDP_PO_

SuccFail
UDP_PO_init(String errFile,

String logFile)

6.20. USER DATAGRAM PROTOCOL POINT OF CONTROL & OBSERVATION (UDP PCO) 143

#endif

UDP PCO user data units can be logged to a file for subsequent analysis during software development by using
the UDP PO facilities. These facilities can be removed from the code at build-time by undefining the UDP PO
preprocessor variable in target.h.

UDP PO init opens an error file and a log file for writing, where the files are named according to the text strings
’errFile’ and ’logFile’, respectively.

The error file is not used at present.
The log file accepts log records which consist of user data units prepended with UDP PO headers. The header

format is defined in udp po.h

6.20.7 Intentionally Interrupting User Data
#ifdef UDP_PC_

SuccFail
UDP_PC_inhibit(Int direction,

Int next)

SuccFail
UDP_PC_lossy(Int direction,

Int percent)

#endif

These functions are used to intentionally interrupt user data units to simulate the effects of a lossy network on
a UDP PCO layer user. These facilities can be removed from the code at build-time by undefining the UDP PC
preprocessor variable in target.h.

UDP PC inhibit causes the UDP PCO layer to “drop” data units. If direction is set to UDP PC INHIBIT SEND
then outbound data units (with respect to the UDP PCO layer user) are interrupted. If direction is set to UDP PC INHIBIT RECEIVE
then inbound data units are interrupted. The value of next determines how many data units to drop. A call to
UDP PC inhibit with next equal to 0 will unconditionally enable data units in the indicated direction regardless of
any previous commands.

UDP PC lossy functions in a manner similar to UDP PC inhibit but instead of dropping a set number of the next
data units, it drops a percent of the data units over time. (The algorithm which determines exactly when to drop a data
unit is based on a random number generator.) percent can vary between 0 and 100. 100 causes all data units to be
dropped. 0 allows all data units to pass through. A call to UDP PC lossy with percent equal to 0 will unconditionally
enable data units in the indicated direction regardless of any previous commands.

6.20.8 Build Options
The UDP PCO module allows optional compilation of the point-of-observation and point-of-control features. These
features may be independently enabled or disabled from within the file target.h. With the point-of-observation feature
disabled PDU transactions are not logged. With the point-of-control feature disabled PDUs can not be inhibited.

The preprocessor directive

#define UDP_PC_

144 CHAPTER 6. OPEN C PLATFORM

enables the point-of-control feature, while

#define UDP_PO_

enables the point-of-observation feature.

6.20.9 Example
Although the two sides of a connection are in most senses peers, they may be thought of as client and server (or
’user’ and ’provider’). The server process merely initializes a SAP (service access point) and waits for input (via the
scheduler system):

void function(T_SapSel *remote_sap, N_SapAddr *remote_address,
T_SapSel *local_sap, N_SapAddr *local_address, DU_View data);

UDP_init(2);
UDP_sapBind(&localSAP,function);
while (SCH_block())

SCH_run();

(There are a few more details to it, but this the core of what has to happen in the server. See the sample program
for details.)

The client has merely to perform a similar process:

void function(T_SapSel *remote_sap, N_SapAddr *remote_address,
T_SapSel *local_sap, N_SapAddr *local_address, DU_View data);

UDP_init(2);
UDP_sapBind(&localSAP,function);

/*
outbound data

*/

UDP_dataReq(localSAPdesc, &remote_sap, &remote_address, data);
/*

If expecting a reply:
*/
while (SCH_block())

SCH_run();

6.21 IMQ
Synopsis

SuccFail IMQ_init(void); /* initialize */
String IMQ_nameCreate(void); /* create a queue name */

6.22. UPQ 145

IMQ_Key IMQ_keyCreate(String name, Int subID); /* create a queue key */
IMQ_PrimDesc IMQ_acceptConn(IMQ_Key key); /* accept connections */
int IMQ_connect(IMQ_PrimDesc queue); /* connect to client */
IMQ_PrimDesc IMQ_clientConnect(IMQ_Key key); /* connect from client to server */
Int IMQ_primSnd(IMQ_PrimDesc primDesc, IMQ_PrimMsg *data, Int size); /* send */
Int IMQ_primRcv(IMQ_PrimDesc primDesc, IMQ_PrimMsg *data, Int size); /* receive */

The IMQ package is a thin wrapper around the socket interprocess communication mechanism. The UPQ package
is an easier-to-use higher-level interface and should normally be used instead of using IMQ directly.

The package uses SOCK STREAM sockets, so (1) send/receive operations may be done only while the server is
actually up and (2) operations are guaranteed properly sequenced and reliable. See the socket man page for details.

Any process using IMQ to act as a server must establish a queue name and a key, which is then advertised to clients
as a connection point. (Clients need only the key, not the queue name.)

Server:

IMQ_init();
name = IMQ_nameCreate();
key = IMQ_keyCreate(name,1); /* must communicate key to client somehow */
desc = IMQ_acceptConn(key);
while ((otherside = IMQ_connect(desc)) == 0) /* does not block */

sleep(n);
/* can then send and receive to ’otherside’ */

Client:

IMQ_init();
serverdesc = IMQ_clientConnect(key); /* server’s key */
/* can then send and receive to ’serverdesc’ */

6.22 UPQ

Synopsis

USQ_init();
PSQ_init();
USQ_putAction(queue, buf, sizeof(SP_Action));
PSQ_register(lowbound, hibound, action_routine, cleanup_routine);
PSQ_putEvent(queue, buf, size);

The UPQ BSD module provides an interprocess communication mechanism between a server machine and an
arbitrary number of clients within a single machine (or any entity conforming to AF UNIX network type). There are
two versions, a ’sync’ version which blocks, and an ’async’ version which does not block.

The provider process advertises its availability on a public queue, named /tmp/SP, available to all. The user
processes then connect to the provider, and the UPQ BSD code establishes a bidirectional ”primitive queue” between

146 CHAPTER 6. OPEN C PLATFORM

provider and user. The queue from user to provider is called the ’action’ queue and the queue from provider to user
the ’event’ queue.

The provider process also needs to know the name of the action/event queue pair, which is generated in the user
process by the mktemp() routine. It’s the responsibility of the application code to arrange to send the name of the
queue (via the USQ putAction routine) from user process to provider process.

The provider expects action messages in the form of the structure SP Action. The function

PSQ_register(lowbound, hibound, processing_routine, clean_connection);

is then called to register with the provider shell system functions to handle the actual work of the provider process.
For example:

PSQ_register(0,800,process_SAT_score, cleanup);

More than one such set of functions may be registered. The ’clean connection’ routine is called when the user
drops the connection to the provider. This routine should take any action necessary to clean up after a connection that
goes dead.

If the type of the incoming action falls outside of the bounds of any set of parameters of all registered processing
functions, the system reports an error via the trace logging mechanism.

The provider calls the scheduler routine SCH BLOCK() to wait for incoming messages and SCH RUN() to run
the appropriate action routine when a message is received.

The user program is trivial; it need merely initialize, create the action/event queue pair (USQ primQuCreate), and
send and receive messages to/from the provider (USQ putAction and USQ getEvent).

Service Access Points: How This Package Is Used
This package can not only connect peer processes, but can also be used for a provider to provide a ”service access

point” (SAP) for a number of users. The provider can then give users access to more than one layer of a multilayer
system (such as a computer network based on the TCP/IP or OSI reference models).

6.23 Release Identification Module (RELID)
#include ‘‘relid.h’’

Char *RELID_getRelidNotice(void);

This module allows you to incorporate release id information into binary executables. The particular string that
RELID getRelidNotice retrieves is extracted from the “Release Notes” associated with a particular release of a product
or a system. The information contained in the string retrieved by RELID getRelidNotice includes the following
information:

System or Product Name: This is a unique name that identifies a program or a set of matching programs belonging
to a system.

Release Number: The particular release number (CVS/RCS revision number) for the release notes that captures this
release.

Release Tag: The particular release tag (CVS/RCS revision tag) for the release notes that captures this release.

6.23. RELEASE IDENTIFICATION MODULE (RELID) 147

Date of Release: The date (day and time) of checking in of the release notes that captures this release. If the release
note is the last module the is checked in for a particular release, then a dated check out can retrieve that particular
release.

Date of Build: The date (day and time) the binary was built.

Person of Build: The user-id of the person who built this binary.

Machine of Build: The name of the machine that was used to build this binary.

Location of Build: The directory in which the binary was built.

The RELID string containing the above information can easily be formatted in many ways. The current process
for generation of the RELID string is described below.

6.23.1 Generation of RELID String
The current implementation comprises of the following components:

releaseNotes.tex: A text file (often in LaTeX format), which includes RCS expanded names and numbers and tags
which identify the particular release.

relid.tpl: A template “C” file that is used to generate “relid.c”.

genrelid.sh: The script which extracts the release information from “releaseNotes.tex” and generates “relid.c” through
“relid.tpl”.

relid.c: A machine generated “C” file that is built by “genrelid.sh” based on “relid.tpl” which implements RE-
LID getRelid.

Customizing or modifying the RELID string, primarily involves editing the “genrelid.sh” script.

6.23.2 Example Usage
Using the RELID module can be as simple as:

LOG_message("%s\n", RELID_getRelidNotice());

The generated string under Solaris appears below.

afrasiab-3% relidusr

CURENV.SOL2 1.1.1.1 (CVS tag unspecified) released on 1996/12/02 20:59:10.
Built on Wed Dec 4 18:32:52 PST 1996 by pean on afrasiab SunOS 5.5.

148 CHAPTER 6. OPEN C PLATFORM

6.24 Copyright Notice Module (CPR)
#include ‘‘cpr.h’’

Char *CPR_getCopyrightNotice(void);

This module allows you to incorporate copyright into binary executables. The Copyright Notice is subject to
content integrity checks and protects against binary editing of the copyright notice.

The following code fragment demonstrates the use of the module.

if (! (copyrightNotice = RELID_getCopyrightNotice())) {
EH_problem("main: get copyright failed");
EH_exit(1);

}

LOG_message("%s\n\n", copyrightNotice);

6.25 License Module (LIC)
This module provides a program to generate valid license files and an API for programs to check against their associ-
ated license files.

the ‘licgen’ program is used to generate the license files

#include ‘‘lic.h’’

SuccFail LIC_check(char *pLicenseFile);

SuccFail LIC_computeHash(char *licensee,
char *startDate,
char *endDate,

char *hostID,
char **hash);

SuccFail LIC_checkHash(char *licensee,
char *startDate,
char *endDate,

char *hostID,
char *hash);

6.25. LICENSE MODULE (LIC) 149

This module is intended for enabling applications to perform license-checking. The parameters of the software
license is recorded in a license file. The license checking involves:

• An integrity check on the license file to see that it has not been tampered with.

• License start date. The software should not be run before the license period begins.

• License end date. The software should not be run after the license expires.

• The host identifier of machine running the software. The software should only be run on the machine identified
by the hostid.

The integrity check on the license file is done by hashing the licensee, start date, end date and host id information
and comparing it against the check digits in the license file to ensure that the license file has not been tampered with.

The host id is a 32-bit unsigned value returned by INET gethostid() expressed as an unpadded decimal integer.
The start and end dates are expressed in YYYYMMDD format.

6.25.1 Generating A License File
The program licgen is used to generate license files. It prompts you for the name of the licensee, the start and end
dates and the host id of the machine that is licensed to run the software. Following is typical licgen session:

icarus-15% ./licgen
Enter Licensee: Neda Communications, Inc.
Licensee is <Neda Communications, Inc.>
Enter Start Date: 19961004
Start Date is <19961004>
Enter End Date: 20010101
End Date is <20010101>
Enter Host ID: 272629761
Host ID is <272629761>
Hash is <7011197853557>
checks out using LIC_checkHash()!
icarus-16%

Using this information, you then create a license file of the following form:

#
this line is a comment as it starts with a ‘#’ character at the
beginning of the line...
#
[License]

Licensee = J Random Company, Inc.
Start Date = 19970219
End Date = 19970401
Host ID = 272629761
Check Digits = 7013006635469

150 CHAPTER 6. OPEN C PLATFORM

6.25.2 Checking Against a License File

When the application starts up, one of the first things it should do is to check the license file that is associated with the
program and machine. This is done by a call to LIC check(¡license filename¿). Your program should link against
liblic.a.

6.26 Integer To English (int2english)

#include "int2english.h"

Char *
PF_intToCardinalEnglish(strBegin, strEnd, value)
Char *strBegin; /* output */
Char *strEnd; /* output */
LgInt value; /* input */

Char *
PF_intToOrdinalEnglish(strBegin, strEnd, value)
Char *strBegin; /* output */
Char *strEnd; /* output */
LgInt value; /* input */

Char *
PF_intToDigitEnglish(strBegin, strEnd, value)
Char *strBegin; /* output */
Char *strEnd; /* output */
LgInt value; /* input */

char *
PF_strToDigitEnglish(char *strBegin, char *strEnd, String digitStr)

This module provides a program to convert integer into a readable ASCII string in English.

6.26.1 PF intToCardinalEnglish

The PF intToCardinalEnglish function convert any integer into cardinal English. It takes integer value as an input and
produces a string of phonemes. Below are several examples of what will be produced by PF intToCardinalEnglish
function:

• if the integer value is 1, the outcome of this will be “one”

• if the integer value is 2005, the string output is “two thousand and five”, etc.

6.26. INTEGER TO ENGLISH (INT2ENGLISH) 151

6.26.2 PF intToOrdinalEnglish
The PF intToOrdinalEnglish function convert any integer into ordinal English. It takes integer value as an input and
produces a string of phonemes. Below are several examples of what will be produced by PF intToOrdinalEnglish
function:

• if the integer value is 1, the outcome of this will be “first”

• if the integer value is 2005, the string output is “two thousandth fifth”, etc.

6.26.3 PF intToDigitEnglish
The PF intToDigitEnglish function convert any integer into ordinal English. It takes integer value as an input and pro-
duces a string of phonemes. Below are several examples of what will be produced by PF intToDigitEnglish function:

• if the integer value is 1, the outcome of this will be “one”

• if the integer value is 11, the string output is “one one”, etc.

6.26.4 PF strToDigitEnglish
The PF intToDigitEnglish function convert any integer into ordinal English. It takes string value as an input and pro-
duces a string of phonemes. Below are several examples of what will be produced by PF strToDigitEnglish function:

• if the string value is “1”, the outcome of this will be “one”

• if the string value is “58”, the string output is “five eight”, etc.

152 CHAPTER 6. OPEN C PLATFORM

Chapter 7

EXAMPLE USAGE OF THE PLATFORM

To demonstrate the proper usage of the platform a simple short stack is implemented.
The middle layer is Inactive Network Layer Protocol (INLP). Below it (LOWER) is a simple loop back data link

layer. Above it (UPPER) is an entity that periodically sends a datagram.
The following platform facilities are used in this example.

DU_, TMR_,

153

154 CHAPTER 7. EXAMPLE USAGE OF THE PLATFORM

 UPPER_

 INLP_

 LOWER_

Figure 7.1: Sample Simple Short Stack

Chapter 8

IMPLEMENTATION OF THE
PLATFORM

The Open C Platform may be implemented for a large number of independent target environments (compiler, hard-
ware, operating system). Rather than attempt to fully support every one of these environments, OCP uses a ”choose-
and-configure” approach to support as many as possible and to the fullest extent possible. Thus, OCP offers a rich
”Components Inventory” to the integrator from which she may build the Open C Platform for her target environment.

Many of the OCP modules do not depend on the underlying operating system. These so-called ’unhosted’ modules
are discussed in Section 8.2 below. Some OCP modules, on the other hand, require the presence of a particular
underlying operating system. These ’hosted’ modules are discussed in Section 8.3. Still other OCP modules may be
implemented with any one of a number of underlying operating systems or even with none at all. These ’portable’
modules are discussed in Section 8.4.

Sections 8.5.1 8.5.2 and 8.5.3 discusses the implementation of the hosted and portable modules under the Unix,
MS-DOS, and VMS operating systems, respectively.

8.1 Implementation Map
Figure 8.1 depicts the relative relationships of the OCP modules to the user application, operating system, computing
hardware, and compiler. The OCP modules occupy the central block in the diagram. Individual modules, represented
as bubbles, occupy one of three regions within this block.

Un-hosted modules are in the lower left. They are completely independent of any operating system but do depend
on the underlying computing hardware as well as on the compiler. The global include file oe.h contains information
which the compiler uses to correctly build un-hosted modules for a given computing platform.

The Queue (QU) module is one example of an un-hosted module. It requires no operating system services to
provide its service.

Hosted modules occupy the right-hand side of the OCP block. They require an underlying operating system to
perform such actions as disk file I/O, interprocess communication, and network communication. The global include
file os.h contains information which the compiler uses to correctly build hosted modules for a given operating system.

The User Process Queue/BSD (UPQ BSD) Module is one example of a hosted module. It depends on the presence
of interprocess communication facilities provided under BSD implementations of Unix and is thus highly operating
system-dependent.

155

156 CHAPTER 8. IMPLEMENTATION OF THE PLATFORM

CPU / Memory / Clock Interrupt

Operating System

target.h

estd.h

oe.h

os.h

Application

TMR_

SCH_

UPQ_BSD_UDP_PCO_ OS_

BO_

DU_

UPQ_SIMU_

Compiler

QU_

FSM_

TM_

PROFILE

CONFIG

ASN

BS_

SAP_ SEQ_

MM_

EH_

IMQ_

Figure 8.1: Implementation Map

8.2. UN-HOSTED FACILITIES 157

Portable modules occupy the middle of the OCP block. They may use one of several underlying operating systems.
Some may also be implemented independently of any operating system.

The User Datagram Protocol Interface (UDP PCO) Module is one example of a portable module. It depends
on the presence of an underlying TCP/UDP/IP stack for network communications but this stack is available under
numerous operating systems.

The Timer (TMR) Module is an example of a module which may or may not use an underlying operating system.
Some implementations might use the Unix signal() facility to provide an underlying timing mechanism whereas others
may simply use a periodic hardware interrupt.

Finally, note the importance of the global include file target.h. This application-specific file contains information
used throughout a given instance of an Open C Layer - information such as the sizes of data buffers and queues, timer
periods, etc.

8.2 Un-hosted Facilities
The following Open C Platform modules do not depend on the underlying operating system. However, some of the
modules may still depend on the underlying hardware architecture. These dependencies are encapsulated in the global
include file oe.h. Thus, when building any of the following modules for a given processor, the developer need only
substitute the oe.h include file for his specific computing platform.

• FSM Finite State Machine Module

• DU

• QU Queue Module

• BO Byte Ordering Module

• BS Byte String

8.3 Hosted Facilities
The following OCP modules require the presence of a specific underlying operating system (O/S).

• UPQ BSD User Process Queue(Berkeley Software Distribution) Module

• UPQ SIMU User Process Queue(Simulated) Module

These modules are all highly dependent on the underlying O/S as well as on the computing hardware and compiler.
The O/S dependencies are encapsulated in the global include file os.h. Thus, when building any of the above modules
the developer must provide the appropriate version of os.h as well as oe.h for his specific computing platform.

8.4 Portable Facilities
The following OCP modules may be implemented under many operating systems or, in some cases, without the
presence of an underlying operating system at all.

158 CHAPTER 8. IMPLEMENTATION OF THE PLATFORM

• UDP PCO User Datagram Protocol Interface Module

• TMR Timer Module

• SCH Scheduler Module

• PROFILE Module

• CONFIG Module

• TM Trace Module

8.4.1 TM Module
Figure 8.2 indicates the specific trace features that are enabled by the bit masks for those OCP modules that use tracing.

8.5 Supported Operating Systems

8.5.1 UNIX
The following hosted modules exist for the Unix operating system:

• UPQ BSD User Process Queue(Berkeley Software Distribution) Module

• UPQ SIMU User Process Queue(Simulated) Module

The following portable modules have been ported to the Unix operating system:

• UDP PCO User Datagram Protocol Interface Module

• TMR Timer Module

• SCH Scheduler Module

• PROFILE Module

• CONFIG Module

• TM Trace Module

CONFIG Module Configuration File Format

The following discussion relates to Unix CONFIG Module configuration files.
Sections are denoted by strings enclosed in square brackets. Parameter Types and Parameter Values are separated

by “equal sign” characters.
CONFIG Module configuration files may contain macro definitions and macro uses. Macros are defined with

a leading percent sign. Macros are used (i.e. the expansion of the macro is replaced with the macro usage) by
enclosing the macro name in curly braces and preceding it with a dollar sign. Environment variables are implicitly
defined macros, and macros may use environment variable names in the same way as macro names defined within the
configuration file.

8.5. SUPPORTED OPERATING SYSTEMS 159

OCP Trace Bit Definitions

Module Name Trace Bit Mask Type of Tracing

ASN 0 0001 All ASN activity: formatting, parsing

DU_ 10 0400 All DU_ activity: allocate, free, link

FSM_ 2 0004 FSM_TMEXEC

3 0008 FSM_TMGEN

4 0010 FSM_TMFUNC

IMQ_ 0 0001 All IMQ_ activity: allocate, free, link

MM 1 0002 Error

3 0004 Normal activity

8 0100 PDU dump

SCH_ 0 0001 All Scheduler activity: queue manipulation, task execution

UDP_ 0 0001 All UDP_ activity: receive, bind

Figure 8.2: Trace Module Bit Definitions

160 CHAPTER 8. IMPLEMENTATION OF THE PLATFORM

In addition to the macro capability, a ”shell command” may be executed (in environments which support it, such
as Unix). To run a shell command, contain the command within back-quotes.

Comments are indicated by a “number sign” character at the start of a line. Any text on that line is ignored.
The following example contains a number of macro definitions, use of environment variables (SHELL), a fairly

complicated example of command execution (with macro expansion), and two Sections, the first containing five pa-
rameters (with macro expansion), and the second containing one parameter.

%macro = expansion
%myshell = ${SHELL}
%hostname = ‘uname -n‘

%lookup = nslookup -query=a chaos

%awkBegin = BEGIN { foundHost = 0; }
%awkName = /Name:/ { foundHost = 1; }
%awkAddr = /Address:/ { if (foundHost) print $2; }

%ip addr = ‘${lookup} | awk ’${awkBegin} ${awkName} ${awkAddr}’‘

This is a comment line

[s1]
v1 = hello world
v2 = macro ${macro} test
v3 = My shell is ${myshell} equiv to ${SHELL}
v4 = My path is ${PATH}
v5 = IP Address = ${ip addr}

[section 2]
v1 = 23

PROFILE Module File Format

The current portation of the PROFILE module is implemented on top of the CFG (Configuration) module. However,
profiles may be stored in any type of database, and additional portations may be created to store profiles in Unix DBM
files, Microsoft Access databases, etc.

8.5.2 MS-DOS
The following hosted modules exist for the MS-DOS operating system:

• UPQ SIMU User Process Queue(Simulated) Module

The following portable modules have been ported to the Unix operating system:

8.5. SUPPORTED OPERATING SYSTEMS 161

• UDP PCO User Datagram Protocol Interface Module

• TMR Timer Module

• SCH Scheduler Module

• TM Trace Module

8.5.3 VMS

162 CHAPTER 8. IMPLEMENTATION OF THE PLATFORM

Chapter 9

DEVELOPMENT ENVIRONMENT

The Open C Platform may be implemented for a large number of independent target environments (hardware, oper-
ating system). Further, the Open C Platform can easily be integrated with a large number of software development
environments. A large number are currently supported and adding new ones is quite easy.

Here, we document the general characteristics that are needed to be understood for convenient developement
under current supported environments as well as the information needed for integrating OCP into other development
environments.

In addition to the portability of the sources, the build procedure for all OCP modules are designed to be location
independent and development system independent. By defining certain cononical capabilities for the virtual compiler,
the virtual librarian, the virtual linker and the virtual loader, the OCP build procedures are easy to move arround.

9.1 Supported Development Environments
The following development environments are currently supported.

9.1.1 Solaris
Under Solaris 2.X (or any UNIX) standard unix tools (ksh, make, ...) are used. GNU tools (gmake, ...) are also
supported.

9.1.2 Windows NT
Under Windows NT the following tools are required:

mksnt An environment that includes UNIX type commands and the Korn shell.

opus-make Opus Make v6.06

9.1.3 Windows 95
Under Windows 95 The following tools are required:

163

164 CHAPTER 9. DEVELOPMENT ENVIRONMENT

mksnt An environment that includes UNIX type commands and the Korn shell.

opus-make Opus Make v6.06

9.1.4 DOS
Under DOS [limited support] The following tools are required:

mksnt An environment that includes UNIX type commands and the Korn shell.

opus-make Opus Make v6.06

9.2 Supported Compilers
The following compilers are currently supported.

9.2.1 GCC
The GNU C Compiler is supported under Solaris.

9.2.2 Microsoft Visual C++ Developer Studio
Windows CE Developer

9.2.3 Borland C 4.5
The Borland C Compiler (version 4.5) is supported under DOS, Windows 95 and NT.

9.2.4 Purify
Purify tools are supported under Solaris.

9.3 Supported Target Environments
The following target environments are currently supported.

• Solaris 2.X (or any UNIX)

• Windows NT

• Windows 95

• DOS

• Windows CE

• A-Engine (A 186 embedded environment)

9.4. GENERAL PHILOSOPHY 165

9.3.1 Solaris

Almost all OCP modules are supported under Solaris.

9.3.2 Windows NT

All hosted OCP modules are supported under Solaris.

9.3.3 Windows 95

All hosted OCP modules are supported under Solaris.

9.3.4 DOS

All hosted OCP modules are supported under Solaris.

9.3.5 Windows CE

All hosted OCP modules are supported under Solaris.

Windows CE Emulator

9.3.6 Embedded

A-Engine is a generic 186 CPU board which supports a variety of peripherals (e.g., serial ports, keypads, displays).
All un-hosted OCP modules are supported under Solaris.

9.4 General Philosophy

Build procedures for OCP are developed with the following high level design principles.

Self Contained Modules The basic building blocks are: [pkg] and [pdt].

Location Independent OCP Modules can be moved around the build file hierarchy.

Development System Independent The sources and the makefiles make no specific assumptions about the develop-
ment environment that is currently in use.

Simple and Generic Makefiles similar to xmkmp.

Extensive use of Shell Scripts

166 CHAPTER 9. DEVELOPMENT ENVIRONMENT

9.5 Build Mechanisms
The OCP build procedures hing around the use of make utility in a particular way. This specific use of the make
utility is centered around the concept of separating the content of a traditional makefile into the following 3 different
categories:

1. Target and Components. The name of the target (the program or the library) and the name of the components
(source files and libraries and link modules).

2. Rules. Make rules describing how to produce binaries from sources.

3. Parameters. Development environment specific parameters such as the name of the compiler in use,.....

The “Target and Components” category is specific to a particular OCP module. The “Rules” and “Parameters”
category are specific to the particular development environment in use. For this reason, the OCP makefiles only
contain the “Target and Components” information. The rules and parameters are supplied to make by a make front-
end (see below).

Although this description focusses on building binaries from C sources, more complex uses of makefiles such as
use of yacc, lex and custom macro processors is also supported.

Build procedures for all OCP modules involve the following components.

Makefile Very naked. List of sources and header files.

Make Initialization File Deals with rules and environment specific issues. For example, using OPUS make, we can
deal with DOS’s command line length limitations in the make initialization file.

Make Front-End Script The make front-end script takes make parameters such as the compiler name (“CC=bc45”)
from the “Make Parameters File” and passes them to make. The Make Front-End script is a shell script called
mkp.sh.

Make Parameters File The make parameters file includes all the product, target environment and development en-
vironment specific parameters. The make parameters file is a shell script that is sourced/doted by the make
front-end script. The naming convention for the make parameter file is: product+target+compiler.sh/

Cononical Tools Compiler, librarian, linker, locator.

9.5.1 Adding New Modules
Adding a new module to OCP process involves creating a new “pkg” or “pdt” makefile for that module.

9.5.2 Adding Support For New Compilers
Adding support for new compilers involves creating new “Make Parameters File” and possibly new “Cononical Tools”
such as librarian and linker front-ends.

Appendix A

GNU LIBRARY GENERAL PUBLIC
LICENSE

Version 2, June 1991

Copyright c© 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary
GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenses are intended to guarantee your freedom to share and change free software—to make sure the
software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation
software, and to any other libraries whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library,
or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the
rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link a program
with the library, you must provide complete object files to the recipients so that they can relink them with the library,
after making changes to the library and recompiling it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the library.

167

168 APPENDIX A. GNU LIBRARY GENERAL PUBLIC LICENSE

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty
for this free library. If the library is modified by someone else and passed on, we want its recipients to know that what
they have is not the original version, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that compa-
nies distributing free software will individually obtain patent licenses, thus in effect transforming the program into
proprietary software. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was
designed for utility programs. This license, the GNU Library General Public License, applies to certain designated
libraries. This license is quite different from the ordinary one; be sure to read it in full, and don’t assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make
between modifying or adding to a program and simply using it. Linking a program with a library, without changing
the library, is in some sense simply using the library, and is analogous to running a utility program or application
program. However, in a textual and legal sense, the linked executable is a combined work, a derivative of the original
library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively
promote software sharing, because most developers did not use the libraries. We concluded that weaker conditions
might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from
the free status of the libraries themselves. This Library General Public License is intended to permit developers of
non-free programs to use free libraries, while preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve this as regards changes in header files, but
we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a “work based on the library” and a “work that uses the library”. The former contains code derived
from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special
one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License Agreement applies to any software library which contains a notice placed by the copyright holder
or other authorized party saying it may be distributed under the terms of this Library General Public License
(also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms.
A “work based on the Library” means either the Library or any derivative work under copyright law: that is
to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without limitation in the term
“modification”.)

169

“Source code” for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface defini-
tion files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program is
covered only if its contents constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what the program that uses the
Library does.

2. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

3. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) The modified work must itself be a software library.
(b) You must cause the files modified to carry prominent notices stating that you changed the files and the date

of any change.
(c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this

License.
(d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application

program that uses the facility, other than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does not supply such function or table,
the facility still operates, and performs whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Library, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based
on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

170 APPENDIX A. GNU LIBRARY GENERAL PUBLIC LICENSE

4. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version
2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

5. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

6. A program that contains no derivative of any portion of the Library, but is designed to work with the Library
by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a “work that uses the library”. The executable
is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code
for the work may be a derivative work of the Library even though the source code is not. Whether this is true
is especially significant if the work can be linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library
will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the
terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are
linked directly with the Library itself.

7. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the
Library to produce a work containing portions of the Library, and distribute that work under terms of your choice,
provided that the terms permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library
and its use are covered by this License. You must supply a copy of this License. If the work during execution
displays copyright notices, you must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this License. Also, you must do one of these things:

171

(a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
“work that uses the Library”, as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

(b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

(c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

(d) Verify that the user has already received a copy of these materials or that you have already sent this user a
copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless
that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

8. You may place library facilities that are a work based on the Library side-by-side in a single library together
with other library facilities not covered by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

(a) Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

(b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

9. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void,
and will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

172 APPENDIX A. GNU LIBRARY GENERAL PUBLIC LICENSE

11. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a
license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

12. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

13. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geo-
graphical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

14. The Free Software Foundation may publish revised and/or new versions of the Library General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Library does not specify
a license version number, you may choose any version ever published by the Free Software Foundation.

15. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are in-
compatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our de-
cision will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

173

16. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LI-
BRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

17. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

174 APPENDIX A. GNU LIBRARY GENERAL PUBLIC LICENSE

How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it
free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms
(or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

one line to give the library’s name and an idea of what it does. Copyright (C) year name of author
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library
General Public License for more details.

You should have received a copy of the GNU Library General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright

disclaimer” for the library, if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for tweaking knobs) written

by James Random Hacker.
signature of Ty Coon, 1 April 1990 Ty Coon, President of Vice
That’s all there is to it!

	INTRODUCTION
	Lower Layers
	Target Environment
	Development Environment
	The Open C Environment
	Definition of Terms

	OPEN C ENVIRONMENT
	Open C Layer Architecture
	Upper Interface
	Lower Interface
	Network Management Interface
	Open C Platform Interface
	Significant Events

	CONVENTIONS
	Identifier Naming
	Identifier Naming Details
	Naming GuideLines
	Abbreviations
	Rationale

	Source File Names
	Implementation of Sequences and Sets
	Restrictions on Usage of Features in C
	Compile Time Configuration
	Global Standard Definitions (estd)

	COMMON FEATURES OF A LAYER
	A Layer's Interfaces
	Initialization
	SAP Management
	Upper Interface
	Lower Interface
	Layer Management Interface

	Usage of Resources
	Integration of Layers
	The G_ module

	MODULE MANAGEMENT ARCHITECTURE
	Module Management (MM)
	Module Management Initialization
	Module Management Entity (MME) facilities
	Module Management Agent facilities

	Layer Management Entity Interface

	OPEN C PLATFORM
	OCP Interfaces
	Environment Specific Facilities (SF_)
	Obtaining Memory
	Synchronization
	Atomic Queue Operations
	Scheduling
	Timer Facilities

	Execution Scheduler (SCH_)
	Byte Ordering (BO_)
	Byte String (BS_):
	Queue Module (QU_)
	QU_ Macros

	Sequence Module (SEQ_)
	Example Usage

	Non-Volatile Queue (NVQ_)
	NVQ_ReturnCode
	NVQ_create
	NVQ_open
	NVQ_close
	NVQ_delete
	NVQ_VIEW_HEAD
	NVQ_VIEW_TAIL
	NVQ_VIEW_ELEM
	NVQ_INSERT_AT_HEAD
	NVQ_INSERT_AT_TAIL
	NVQ_INSERT_BEFORE
	NVQ_INSERT_AFTER
	NVQ_REMOVE_HEAD
	NVQ_REMOVE_TAIL
	NVQ_REMOVE_ELEM
	NVQ_FIRST
	NVQ_LAST
	NVQ_NEXT
	NVQ_PREV
	NVQ_EQUAL

	Exception Handling (EH_)
	Log Module (LOG_)
	Log Module Initialization
	LOG_ User Initialization
	Log Message Display

	Trace Module (TM_)
	Trace Module Initialization
	TM_ User Initialization
	Trace Message Display
	Example Usage
	Run Time Control of TM_

	SAP management (SAP_)
	Representation of a SAP Address
	SAP Address Manipulation Facilities

	Timer Management Module (TMR_)
	Starting a Timer
	Stopping a Timer
	Associating User Data with Timers
	Implementation Specific Interfaces
	Example Usage

	Data Unit Management (DU_)
	Creation of a Pool
	Creation of a Data Unit
	Creating a new View
	Freeing a View
	Manipulating a View's Data
	Accessing a View's User Information
	Example Usage

	Buffer (BUF)
	Allocate and Free a Buffer
	Add, Get, and Unget an Octet
	Allocate and Assign a New Buffer Segment
	Prepend a Buffer
	Get the Next Chunk of a PDU
	Append a String to a Buffer
	Append One Buffer to Another
	Reset Buffer Pointers
	Copy a Buffer
	Clone a Portion of a Buffer
	Get the Length of a Buffer
	Display a Buffer

	Configuration Module (CFG)
	Open and Close a Configuration File
	Get a Section
	Get a Parameter
	Operate on Parameter Values
	Permanance

	Subscriber Profile Module (PROFILE)
	Open and Close a Profile Library
	Add an Attribute to a Profile
	Search a Profile
	Get an Attribute Value

	Abstract Syntax Notation (ASN)
	Trace Flags
	Functions
	Functions
	ASN_tableEntry Declaration

	Finite State Machine (FSM_)
	State Machine Functions
	Transition Diagram Functions
	FSM Usage Examples

	User Datagram Protocol Point of Control & Observation (UDP_PCO_)
	Initializing the Package
	Creating a SAP
	Removing a SAP
	Sending Data via a SAP
	Receiving Data via a SAP
	Logging User Data
	Intentionally Interrupting User Data
	Build Options
	Example

	IMQ
	UPQ
	Release Identification Module (RELID_)
	Generation of RELID_ String
	Example Usage

	Copyright Notice Module (CPR_)
	License Module (LIC_)
	Generating A License File
	Checking Against a License File

	Integer To English (int2english)
	PF_intToCardinalEnglish
	PF_intToOrdinalEnglish
	PF_intToDigitEnglish
	PF_strToDigitEnglish

	EXAMPLE USAGE OF THE PLATFORM
	IMPLEMENTATION OF THE PLATFORM
	Implementation Map
	Un-hosted Facilities
	Hosted Facilities
	Portable Facilities
	TM_ Module

	Supported Operating Systems
	UNIX
	MS-DOS
	VMS

	DEVELOPMENT ENVIRONMENT
	Supported Development Environments
	Solaris
	Windows NT
	Windows 95
	DOS

	Supported Compilers
	GCC
	Microsoft Visual C++ Developer Studio
	Borland C 4.5
	Purify

	Supported Target Environments
	Solaris
	Windows NT
	Windows 95
	DOS
	Windows CE
	Embedded

	General Philosophy
	Build Mechanisms
	Adding New Modules
	Adding Support For New Compilers

	 GNU LIBRARY GENERAL PUBLIC LICENSE

